A new tool to detect exposure surfaces in shallow water carbonate depositional environments

2002 ◽  
Vol 45 (3) ◽  
pp. 301-317 ◽  
Author(s):  
Andrea Mindszenty ◽  
J. Ferenc Deák ◽  
Mária Fölvári
2020 ◽  
Author(s):  
Simon Courgeon ◽  
Yasin Makhloufi ◽  
Lucas Vimpere ◽  
Michel Meyer ◽  
Elias Samankassou

<p><span>Chemostratigraphy has become a key tool to study shallow-water carbonate systems and propose insightful time correlations where biostratigraphic markers are limited. However, the bulk geochemical signal of shallow-water carbonate deposits commonly results from the superposition of local and global trends. </span><span>A</span><span>dditionally, </span><span>the shallow-water carbonate deposits</span><span> frequently undergo intense diagenetic alteration obliterating the original seawater signature.</span></p><p><span>Based on three well-constrained Upper Jurassic sections of the French Jura, this study aims at discussing the control of the original depositional environment on the bulk geochemical signature of ancient shallow-water carbonates. Using isotope ratios </span><span>(</span>δ<sup><span>13</span></sup><span>C, </span>δ<sup><span>18</span></sup><span>O, </span><sup><span>87</span></sup><span>Sr/</span><sup><span>86</span></sup><span>Sr), elemental concentrations (Ca, Mg, Fe, Mn, Sr, Al, U) and statistical methods, this paper shows that two main processes, closely linked to the depositional environments and associated conditions, control the overall signature of bulk samples of the studied deposits: the detrital input and the diagenetic effects. The detrital input, identified by increase in Fe, Al, Mn and U concentrations, is the highest in very proximal areas (supra- and intertidal domains) affected by terrestrial organic matter and pedogenetic material influx, and in distal realms (open sea) characterized by fine terrigenous fraction deriving from continental landmass erosion. The diagenetic effect</span><span>s</span><span> can be subdivided into two processes: the dolomitization and the diagenetic imprint. The dolomitization, associated to increase in Mg and </span>δ<sup><span>18</span></sup><span>O, mostly concerns supra- and intertidal deposits affected by refluxing evaporitic-derived brines. The diagenetic imprint, mainly associated to decrease of </span>δ<sup><span>13</span></sup><span>C, </span>δ<sup><span>18</span></sup><span>O and increase in </span><sup><span>87</span></sup><span>Sr/</span><sup><span>86</span></sup><span>Sr, is the most important in platform margin deposits associated to high primary porosities enhancing fluid-rock interactions during burial </span><span>an</span><span>d</span><span>/or meteoric</span><span> diagenesis. Because of these processes, time correlations are overall very difficult to establish between the studied sections.</span></p><p><span>The combined analyses of depositional environments and geochemical signal finally led to the conclusion that the concept of “geochemical facies” might represent an interesting tool to discuss depositional conditions and diagenetic effects along specific depositional models.</span><span> This integrated study provides (1) relevant results to step back on challenging chemostratigraphic interpretations in shallow-water carbonate settings and (2) new insights into the complex sedimentological, diagenetic and geochemical interactions in shallow-water carbonate depositional systems.</span></p><p><br><br></p>


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


2010 ◽  
Vol 61 (2) ◽  
pp. 89-109 ◽  
Author(s):  
Senecio Schefer ◽  
Daniel Egli ◽  
Sigrid Missoni ◽  
Daniel Bernoulli ◽  
Bernhard Fügenschuh ◽  
...  

Triassic metasediments in the internal Dinarides (Kopaonik area, southern Serbia): stratigraphy, paleogeographic and tectonic significanceStrongly deformed and metamorphosed sediments in the Studenica Valley and Kopaonik area in southern Serbia expose the easternmost occurrences of Triassic sediments in the Dinarides. In these areas, Upper Paleozoic terrigenous sediments are overlain by Lower Triassic siliciclastics and limestones and by Anisian shallow-water carbonates. A pronounced facies change to hemipelagic and distal turbiditic, cherty metalimestones (Kopaonik Formation) testifies a Late Anisian drowning of the former shallow-water carbonate shelf. Sedimentation of the Kopaonik Formation was contemporaneous with shallow-water carbonate production on nearby carbonate platforms that were the source areas of diluted turbidity currents reaching the depositional area of this formation. The Kopaonik Formation was dated by conodont faunas as Late Anisian to Norian and possibly extends into the Early Jurassic. It is therefore considered an equivalent of the grey Hallstatt facies of the Eastern Alps, the Western Carpathians, and the Albanides-Hellenides. The coeval carbonate platforms were generally situated in more proximal areas of the Adriatic margin, whereas the distal margin was dominated by hemipelagic/pelagic and distal turbiditic sedimentation, facing the evolving Neotethys Ocean to the east. A similar arrangement of Triassic facies belts can be recognized all along the evolving Meliata-Maliac-Vardar branch of Neotethys, which is in line with a ‘one-ocean-hypothesis’ for the Dinarides: all the ophiolites presently located southwest of the Drina-Ivanjica and Kopaonik thrust sheets are derived from an area to the east, and the Drina-Ivanjica and Kopaonik units emerge in tectonic windows from below this ophiolite nappe. On the base of the Triassic facies distribution we see neither argument for an independent Dinaridic Ocean nor evidence for isolated terranes or blocks.


2010 ◽  
Vol 90 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Ivana Carevic ◽  
Darivojka Ljubovic-Obradovic ◽  
Monika Bozinovic ◽  
Velimir Jovanovic

The Upper Barremian-Lower Aptian succession is recorded from a limestone sequence that crops out in the surrounding of Rakova Bara in the Carpatho-Balkanides range in northeastern Serbia. The micropalaeontological and sedimentological studies lead to recognition of the two types of microfacies. The benthic foraminiferal association consists of Vercorsella laurentii, Rumanoloculina robusta, Praechrysalidina infracretaceae, Dictyoconus gr. arabicus, Debarina hahounerensis, Charentia cuvilieri and Pseudocyclammina lituus that confirm the stratigraphical and palaeoenvironmental connection of the microfossil assemblages with the classical Urgonian-type, shallow-water carbonate sedimentation. The association documented for the first time in the study area is considered typical of the Tethyan Realm. The stratigraphical position of the benthic foraminifera species within the Upper Barremian-Lower Aptian interval is discussed. The Urgonian Limestone's of the studied section are comparable with adjacent areas of eastern Serbia and Romanian South Carpathians. .


2018 ◽  
Vol 92 (4) ◽  
pp. 681-712
Author(s):  
William I. Ausich ◽  
Elizabeth C. Rhenberg ◽  
David L. Meyer

AbstractThe Batocrinidae are characteristic faunal elements in Lower Mississippian shallow-marine settings in North America. Recent delineation of objectively defined genera allows a reexamination of batocrinid species and their distribution in the Fort Payne Formation (early Viséan, late Osagean), a well-studied array of carbonate and siliciclastic facies. The Fort Payne batocrinid fauna has 14 species assigned to six genera, plus hybrid specimens.Magnuscrinus spinosus(Miller and Gurley, 1895a) is reassigned to its original placement inEretmocrinus. Hybrid specimens (Ausich and Meyer, 1994) are regarded asEretmocrinus magnificus×Eretmocrinus spinosus.Macrocrinus casualisis the dominant species ofMacrocrinusin the Fort Payne, andM.mundulusandM.strotobasilarisare recognized in the Fort Payne Formation for the first time.Magnuscrinus cumberlandensisn. sp. is named, 13 species are designated as junior synonyms, the name for the hybrid specimens is changed toEretmocrinus magnificus×Eretmocrinus spinosus, and the previous occurrences of two species in the Fort Payne are rejected. The Eastern Interior Seaway was a mixed carbonate-siliciclastic setting with both shallow- and deep-water epicontinental sea facies ranging from relatively shallow autochthonous green shales to deep-water turbidite facies.Dizygocrinuswas restricted to shallow-water carbonate and siliciclastic facies,Eutrochocrinuswas restricted to shallow-water carbonate facies, andMagnuscrinuswas restricted to deep-water facies. Species distributions varied fromAbatocrinus steropes,Alloprosallocrinus conicus,Macrocrinus mundulus, andUperocrinus nashvillae, which occurred throughout the Eastern Interior Seaway, to species that were restricted to a single facies.Eretmocrinus magnificus,Alloprosallocrinus conicus, andUperocrinus robustuswere the dominant batocrinids in the Fort Payne Formation.UUID:http://zoobank.org/703aafd8-4c73-4edc-9870-e2356e2d28b8


2004 ◽  
Vol 68 (21) ◽  
pp. 4363-4379 ◽  
Author(s):  
Anitra E. Ingalls ◽  
Robert C. Aller ◽  
Cindy Lee ◽  
Stuart G. Wakeham

Sign in / Sign up

Export Citation Format

Share Document