scholarly journals Galois coverings of one-sided bimodule problems

2021 ◽  
Vol 14 (2) ◽  
pp. 93-116
Author(s):  
Vyacheslav Babych ◽  
Nataliya Golovashchuk

Applying geometric methods of 2-dimensional cell complex theory, we construct a Galois covering of a bimodule problem satisfying some structure, triangularity and finiteness conditions in order to describe the objects of finite representation type. Each admitted bimodule problem A is endowed with a quasi multiplicative basis. The main result shows that for a problem from the considered class having some finiteness restrictions and the schurian universal covering A', either A is schurian, or its basic bigraph contains a dotted loop, or it has a standard minimal non-schurian bimodule subproblem.

1987 ◽  
Vol 15 (1-2) ◽  
pp. 377-424 ◽  
Author(s):  
Kiyoshi Igusa ◽  
Maria-Ines Platzeck ◽  
Gordana Todorov ◽  
Dan Zachana

Author(s):  
Agustín Moreno Cañadas ◽  
Gabriel Bravo Rios ◽  
Hernán Giraldo

Categorification of some integer sequences are obtained by enumerating the number of sections in the Auslander–Reiten quiver of algebras of finite representation type.


2016 ◽  
Vol 48 (4) ◽  
pp. 589-600
Author(s):  
Jerzy Białkowski ◽  
Andrzej Skowroński

1983 ◽  
Vol 182 (1) ◽  
pp. 129-148 ◽  
Author(s):  
Hagen Meltzer ◽  
Andrzej Skowroński

2013 ◽  
Vol 24 (02) ◽  
pp. 1350017
Author(s):  
A. MUHAMMED ULUDAĞ ◽  
CELAL CEM SARIOĞLU

We give a brief survey of the so-called Fenchel's problem for the projective plane, that is the problem of existence of finite Galois coverings of the complex projective plane branched along a given divisor and prove the following result: Let p, q be two integers greater than 1 and C be an irreducible plane curve. If there is a surjection of the fundamental group of the complement of C into a free product of cyclic groups of orders p and q, then there is a finite Galois covering of the projective plane branched along C with any given branching index.


Sign in / Sign up

Export Citation Format

Share Document