scholarly journals Adaptive LMS Theory Based Energy Minimized Dynamic Voltage Restorer for Mitigating Various Power Quality Problems in a Distribution System

Author(s):  
Shubhendra Pratap Singh ◽  
◽  
Abdul Hamid Bhat ◽  
Author(s):  
A. Sathik Basha ◽  
M. Ramasamy

Increased utilization of nonlinear loads in the power distribution system with profound integration of renewable energy requires improved power quality control. This paper proposes a Reformed Second Order Generalized Integrated (R-SOGI) control scheme for enhancing the output of the Dynamic Voltage Restorer (DVR) for the objective of achieving the desired sinusoidal voltage wave shape at the common point of services and harmonic reduction. The DVR incorporates a Solar Photovoltaic (SPV) system using the Z-source Inverter (ZSI), providing the necessary active power to mitigate the voltage sag/swell and power demand. ZSI offers step-down as well as step-up abilities, it makes the converters to operate in the conditions of shoot-through. Therefore, the application of ZSI-based DVR topology seems very promising. The compensating reference voltage is generated by the R-SOGI algorithm, which offers superior output under conditions for grid voltage irregularities, including voltage sag/swell and unbalanced and distorted utility grid voltages. In comparison to DVR based on the VSI voltage inverter (VSI), the response from ZSI-DVR to a reduction of voltage distortions and harmonics is investigated. An experimental SPV ZSI-DVR prototype is developed in the laboratory to check the effectiveness of the controller and is tested under balanced and unbalanced supply and dynamic load conditions.


2016 ◽  
Vol 818 ◽  
pp. 52-57 ◽  
Author(s):  
Faridullah Kakar ◽  
Abdullah Asuhaimi bin Mohd Zin ◽  
Mohd Hafiz bin Habibuddin

Voltage sag and harmonics are the most frequent power quality problems faced by industrial and commercial customers today. Situation has been aggravated by modern sensitive industrial equipments which introduce system harmonics due to their inherent V-I characteristics. In this paper, proportional integral (PI) control technique based dynamic voltage restorer (DVR) is implemented in power distribution system to suppress voltage sag and harmonics under linear, non-linear and induction motor load conditions. Real-time power distribution system and DVR test models are built in Matlab/Simulink software. Simulation results exhibit excellent PI control approach with effective performance yielding excellent voltage regulation.


Author(s):  
Dung Vo Tien ◽  
Radomir Gono ◽  
Zbigniew Leonowicz

Power quality is a major concern in electrical power systems. The power quality disturbances such as sags, swells, harmonic distortion and other interruptions have impact on the electrical devices and machines and in severe cases can cause serious damages. Therefore it is required to recognize and compensate all types of disturbances at an earliest to ensure normal and efficient operation of the power system. To solve these problems, many types of power devices are used. At the present time, one of those devices, Dynamic Voltage Restorer (DVR) is the most efficient and effective device used in power distribution system. In this paper, design and modeling of a new structure of multifunctional DVR for voltage correction is presented. The performance of the device under different conditions such as voltage swell, voltage sag due to symmetrical and unsymmetrical short circuit, starting of motors, and voltage distortion are described. Simulation result shows the superior capability of proposed DVR to improve power quality under different operating conditions. The proposed new DVR controller is able to detect the voltage disturbances and control the converter to inject appropriate voltages independently for each phase and compensate to load voltage through three single- phase transformers.


Sign in / Sign up

Export Citation Format

Share Document