low voltage
Recently Published Documents


TOTAL DOCUMENTS

21001
(FIVE YEARS 4652)

H-INDEX

139
(FIVE YEARS 20)

2022 ◽  
Vol 203 ◽  
pp. 107679
Author(s):  
Oscar Pinzón-Quintero ◽  
Daniel Gaviria-Ospina ◽  
Alejandro Parrado-Duque ◽  
Rusber Rodríguez-Velásquez ◽  
German Osma-Pinto

2022 ◽  
Vol 430 ◽  
pp. 132743
Author(s):  
Jiguo Tu ◽  
Cheng Chang ◽  
Mingyong Wang ◽  
Wei Guan ◽  
Shuqiang Jiao

Author(s):  
Hongwei Li ◽  
Xiao Wang ◽  
Junmu Lin ◽  
Lei Wu ◽  
Tong Liu

Purpose This study aims to provide a solution of the power flow calculation for the low-voltage ditrect current power grid. The direct current (DC) power grid is becoming a reliable and economic alternative to millions of residential loads. The power flow (PF) in the DC network has some similarities with the alternative current case, but there are important differences that deserve to be further concerned. Moreover, the dispatchable distributed generators (DGs) in DC network can realize the flexible voltage control based on droop-control or virtual impedance-based methods. Thus, DC PF problems are still required to further study, such as hosting all load types and different DGs. Design/methodology/approach The DC power analysis was explored in this paper, and an improved Newton–Raphson based linear PF method has been proposed. Considering that constant impedance (CR), constant current (CI) and constant power (CP) (ZIP) loads can get close to the practical load level, ZIP load has been merged into the linear PF method. Moreover, DGs are much common and can be easily connected to the DC grid, so V nodes and the dispatchable DG units with droop control have been further taken into account in the proposed method. Findings The performance and advantages of the proposed method are investigated based on the results of the various test systems. The two existing linear models were used to compare with the proposed linear method. The numerical results demonstrate enough accuracy, strong robustness and high computational efficiency of the proposed linear method even in the heavily-loaded conditions and with 10 times the line resistances. Originality/value The conductance corresponding to each constant resistance load and the equivalent conductance for the dispatchable unit can be directly merged into the self-conductance (diagonal component) of the conductance matrix. The constant current loads and the injection powers from dispatchable DG units can be treated as the current sources in the proposed method. All of those make the PF model much clear and simple. It is capable of offering enough accuracy level, and it is suitable for applications in DC networks that require a large number of repeated PF calculations to optimize the energy flows under different scenarios.


2022 ◽  
Vol 9 ◽  
Author(s):  
Quanyi Gong ◽  
Ke Peng ◽  
Wei Wang ◽  
Bingyin Xu ◽  
Xinhui Zhang ◽  
...  

With the increase of various loads connected to the low-voltage distribution system, the difficulty of identifying low-voltage series fault arcs has greatly increased, which seriously threatens the electricity safety. Aiming at such problems, a neural network algorithm based on multi-feature fusion is proposed. The fault current has the characteristics of randomness, high frequency noise, and singularity. A GA-BP neural network model is built, and the wavelet analysis method (based on singularity), Fourier transform method (based on high frequency noise), current cycle difference method (based on randomness), and current cycle similarity derivation method (based on randomness) are used for feature extraction and can more comprehensively reflect the characteristics of arc faults. Simulation results show that the multi-feature fusion algorithm has a higher recognition rate than other algorithms. Moreover, compared with the support vector machine model, logistic regression model, and AlexNet model, the GA-BP neural network model has a higher recognition accuracy than the other three models, which can reach 99%.


Sign in / Sign up

Export Citation Format

Share Document