pi control
Recently Published Documents


TOTAL DOCUMENTS

981
(FIVE YEARS 240)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Nguyen Hoai Nam

There exist several approaches to design the optimal control strategy to harvest wave energy with a point absorber. However they are generally based on the assumption that the WEC and the PTO dynamics are well-known. In the practical WEC control implementation, this is generally not the case. The objective of this paper is to design a robust optimal control strategy that can take into account the uncertain WEC and PTO dynamics. Our choice is a robust adaptive PI control law. The proposed controller is validated and compared through simulation for irregular sea states.


2022 ◽  
Author(s):  
Nguyen Hoai Nam

There exist several approaches to design the optimal control strategy to harvest wave energy with a point absorber. However they are generally based on the assumption that the WEC and the PTO dynamics are well-known. In the practical WEC control implementation, this is generally not the case. The objective of this paper is to design a robust optimal control strategy that can take into account the uncertain WEC and PTO dynamics. Our choice is a robust adaptive PI control law. The proposed controller is validated and compared through simulation for irregular sea states.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Jinfeng Wang ◽  
Wanying Chang ◽  
Jing Xie

In this paper, the electronic expansion valve (EXV) on the single-tube heat exchange experimental platform was used as a research object. Firstly, the EXVs were selected according to the experimental requirements, and the functional parameters were set. Subsequently, the effective opening ranges of the EXVs were determined by manual control, and the control effects of the EXVs installed at the front and back ends of the test section were compared. Finally, by self-tuning and optimizing the best response curves, the proportional and integral coefficients suitable for the experimental platform were obtained; thus, the automatic intelligent control of EXV based on the proportional integral (PI) control algorithm was realized. From setting EXV functional parameters to realizing PI control, an appropriate experimental system-debugging solution for the whole process could be obtained. Based on the solution, the system stability could be improved, and the transition process time could be shortened. Furthermore, the solution also provided a method to guarantee the accuracy of experimental data and could be applied to the debugging of similar experimental systems.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Chenyang Sun ◽  
Pengfei Sun ◽  
Jun Zhou ◽  
Jiawen Mao

In agricultural vehicles with internal combustion engines, owing to the use of rear-wheel drive or four-wheel drive, it is difficult to obtain information regarding the slip of the driving wheels. Excessive wheel slip, an inevitable phenomenon occurring during agricultural activities, can easily damage the original soil surface and result in excessive energy consumption. To solve these problems, a distributed drive agricultural vehicle (DDAV) based on multi-information fusion was proposed. The actual travel reduction of each wheel was calculated by determining the vehicle parameters in order to deliver the required torque to the four drive wheels via sliding mode control (SMC) and incremental proportional-integral (PI) control. Through this process, the vehicle always operates in a straight line. Test results show that, on a uniform surface, the travel reduction of each wheel can be maintained at the target value by using the incremental PI control strategy, with only minor fluctuations, to make the vehicle run in a straight line (R2 = 0.9999). Furthermore, on a separated surface, the travel reduction of each wheel can be maintained at the target value, and using the SMC strategy enables more identical coefficient of gross tractions for each wheel to make the vehicle run in a straight line (R2 = 0.9902). Unlike the non-control strategy, the vehicle reaches a stable state within 1 s, owing to the use of a controller that can effectively reduce the impact of road changes on vehicle velocity. This study can provide a reference for the drive control of DDAVs.


Author(s):  
B. Iea ◽  
D.T. Pham ◽  
N. Pinoteau ◽  
J.-F. Caron
Keyword(s):  

Author(s):  
Khairil Khairil ◽  
Toibah Umi Kalsum

Robots are useful to help humans in performing jobs that require high precision, substantial labor, repetitive and dirty work, and high-risk or dangerous jobs. Those are the high-risk human jobs that a robot can do. Wheeled robots have the ability to go to the targeted position. Proportional control is used to control the movement of robots. In addition, the robot will also be equipped with PI control method to adjust the actual wheel speed of the robot. The block diagram of the obstacle-driven avoider robot consists of push button, rotary encoder, ultrasonic sensor, Atmega, IC L298D, DC Motor and Light. The results of the obstacle-driven avoider robot, wheeled robots have the ability to run in accordance with the desired black line. Proportional control is used to control the movement of robots. In addition, the robot will also be equipped with ultrasonic sensors to set the robot in avoiding obstacles. Based on the results of testing and analysis that have done, it is suggested that there is tool that can be provided to develop a more sophisticated technology like adding sensors or more features.


2021 ◽  
Author(s):  
Sujet Phodapol ◽  
Tachadol Suthisomboon ◽  
Pong Kosanunt ◽  
Ravipas Vongasemjit ◽  
Petch Janbanjong ◽  
...  

Abstract Passive and active hybrid pipeline inspection gauges (PIGs) have been used for in-pipe inspection. While a passive PIG cannot control its speed, the hybrid version can achieve this by using an integrated valve specifically designed and embedded in the PIG. This study proposes a generic new method for speed adaptation in PIGs (called MC-PIG) by introducing a generic, modular, controllable, external valve unit add-on for attaching to existing conventional (passive) PIGs with minimal change. The MC-PIG method is based on the principle of morphological computation with closed-loop control. It is achieved by regulating/computing the PIG's morphology (i.e., a modular rotary valve unit add-on) to control bypass flow. Adjustment of the valve angle can affect the flow rate passing through the PIG, resulting in speed regulation ability. We use numerical simulation with computational fluid dynamics (CFD) to investigate and analyze the speed of a simulated PIG with the valve unit adjusted by proportional-integral (PI) control under various in-pipe pressure conditions. Our simulation experiments are performed under different operating conditions in three pipe sizes (16″, 18″, and 22″ in diameter) to manifest the speed adaptation of the PIG with the modular valve unit add-on and PI control. Our results show that the PIG can effectively perform real-time adaptation (i.e., adjusting its valve angle) to maintain the desired speed. The valve design can be adjusted from 5 degrees (closed valve, resulting in high moving speed) to a maximum of 45 degrees (fully open valve, resulting in low moving speed). The speed of the PIG can be regulated from 0.59 m/s to 3.88 m/s in a 16″ pipe at 4.38 m/s (in-pipe fluid velocity), 2500 kPa (operating pressure), and 62 °C (operating temperature). Finally, the MC-PIG method is validated using a 3D-printed prototype in a 6″ pipe. Through the investigation, we observed that two factors influence speed adaptation; the pressure drop coefficient and friction of the PIG and pipeline. In conclusion, the results from the simulation and prototype show close characteristics with an acceptable error.


Author(s):  
M. Kalyan Chakravarthi ◽  
Y. V. Pavan Kumar ◽  
D. John Pradeep ◽  
Ch. Pradeep Reddy ◽  
Anumola Vaishnavi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document