scholarly journals Learning Adaptive Random Features

Author(s):  
Yanjun Li ◽  
Kai Zhang ◽  
Jun Wang ◽  
Sanjiv Kumar

Random Fourier features are a powerful framework to approximate shift invariant kernels with Monte Carlo integration, which has drawn considerable interest in scaling up kernel-based learning, dimensionality reduction, and information retrieval. In the literature, many sampling schemes have been proposed to improve the approximation performance. However, an interesting theoretic and algorithmic challenge still remains, i.e., how to optimize the design of random Fourier features to achieve good kernel approximation on any input data using a low spectral sampling rate? In this paper, we propose to compute more adaptive random Fourier features with optimized spectral samples (wj’s) and feature weights (pj’s). The learning scheme not only significantly reduces the spectral sampling rate needed for accurate kernel approximation, but also allows joint optimization with any supervised learning framework. We establish generalization bounds using Rademacher complexity, and demonstrate advantages over previous methods. Moreover, our experiments show that the empirical kernel approximation provides effective regularization for supervised learning.

2019 ◽  
Vol 338 ◽  
pp. 207-221
Author(s):  
Jiajing Zhu ◽  
Yongguo Liu ◽  
Yun Zhang ◽  
Zhi Chen ◽  
Qiaoqin Li ◽  
...  

2020 ◽  
Vol 34 (04) ◽  
pp. 4844-4851
Author(s):  
Fanghui Liu ◽  
Xiaolin Huang ◽  
Yudong Chen ◽  
Jie Yang ◽  
Johan Suykens

In this paper, we propose a fast surrogate leverage weighted sampling strategy to generate refined random Fourier features for kernel approximation. Compared to the current state-of-the-art method that uses the leverage weighted scheme (Li et al. 2019), our new strategy is simpler and more effective. It uses kernel alignment to guide the sampling process and it can avoid the matrix inversion operator when we compute the leverage function. Given n observations and s random features, our strategy can reduce the time complexity for sampling from O(ns2+s3) to O(ns2), while achieving comparable (or even slightly better) prediction performance when applied to kernel ridge regression (KRR). In addition, we provide theoretical guarantees on the generalization performance of our approach, and in particular characterize the number of random features required to achieve statistical guarantees in KRR. Experiments on several benchmark datasets demonstrate that our algorithm achieves comparable prediction performance and takes less time cost when compared to (Li et al. 2019).


2021 ◽  
Author(s):  
Renqi Jia ◽  
Xu Bai ◽  
Xiaofei Zhou ◽  
Shirui Pan

Sign in / Sign up

Export Citation Format

Share Document