The bearing capacity of footings on a sand layer overlying soft clay

Géotechnique ◽  
1997 ◽  
Vol 47 (2) ◽  
pp. 339-345 ◽  
Author(s):  
M. J. Kenny ◽  
K. Z. Andrawes
Géotechnique ◽  
1999 ◽  
Vol 49 (4) ◽  
pp. 553-555
Author(s):  
M. J. Kenny ◽  
K. Z. Andrawes

1974 ◽  
Vol 11 (2) ◽  
pp. 223-229 ◽  
Author(s):  
G. G. Meyerhof

The ultimate bearing capacity of footings resting on subsoils consisting of two layers has been investigated for the cases of dense sand on soft clay and loose sand on stiff clay. The analyses of different modes of soil failure are compared with the results of model tests on circular and strip footings and some field observations of foundation failures.


2017 ◽  
Vol 17 (10) ◽  
pp. 06017018 ◽  
Author(s):  
Vishwas N. Khatri ◽  
Jyant Kumar ◽  
Shamim Akhtar

Author(s):  
Wen Gao ◽  
Tom Harrup ◽  
Yuxia Hu ◽  
David White

The rapid penetration of one or more of the foundations of a mobile jack-up rig into the seabed is an ongoing major problem in the offshore industry, with the potential to cause major damage to the structure and endangering any personnel on board. A recent example is the jack-up drilling rig Perro Negro 6 incident happened near the mouth of the Congo river in July 2013 with one of the rig’s crew of 103 reported missing and six others injured. This uncontrollable displacement is due to a form of failure known as punch through failure and commonly occurs on stratified seabed profiles. It has been reported that unexpected punch-through accidents have resulted in both rig damage and lost drilling time at a rate of 1 incident per annum with consequential costs estimated at between US$1 and US$10 million [1]. This paper presents the bearing capacity profiles and associated soil flow mechanisms of a common spudcan foundation penetrating into a three layer soft-stiff-soft clay soil through the use of large deformation finite element (LDFE) analysis. The Remeshing and Interpolation with Small Strain (RITSS) [2, 3] technique was implemented in the software package AFENA [4] to conduct the LDFE analysis. Both soil layer thickness and soil layer strength ratios were varied to study their effect on the spudcan penetration responses. The LDFE results of spudcan penetration into the soft-stiff-soft clay soils were calibrated by existing centrifuge test data. A parametric study was then conducted to study the bearing capacity responses and soil flow mechanisms during spudcan large penetrations by varying the soil layer strength ratio and relative layer thickness to the diameter of spudcan. It was found that there were three types of bearing responses during continuous penetration of spudcan: (a) when the top soft layer is relatively thin, the spudcan bearing response was similar to that of two layer soils with stiff over soft clays; (b) when the top soil layer thickness is medium, a peak resistance is observed when spudcan penetrates into the middle stiff layer followed by reduction; (c) when the soil layer is thick, the peak resistance occurs when spudcan gets into the bottom soft soil layer. The critical thickness of top soil layer is a function of soil strength ratio and middle stiff soil layer thickness. The bearing response types were also corresponding to the soil cavity formations during spudcan initial penetration.


Sign in / Sign up

Export Citation Format

Share Document