loose sand
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 59)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 142 ◽  
pp. 104588
Author(s):  
Abdollah Sadr ◽  
Victor N. Kaliakin ◽  
Nader Hataf ◽  
Kalehiwot N. Manahiloh

2021 ◽  
Vol 11 (24) ◽  
pp. 11837
Author(s):  
Pei Zhang ◽  
Shijia Ding ◽  
Kang Fei

In order to study the shear behavior of the interface between sand and structure, a series of shear tests were carried out using an HJ-1 ring shear apparatus (Nanjing, China). First, through the monotonic shear tests, the loose sand and dense sand were sheared at the steel interface with different roughnesses. The results showed that when the interface was relatively smooth, the shear stress–shear displacement curves of loose sand and dense sand both exhibit strain hardening characteristics. When the interface was rough, the dense sand showed strain softening. The initial shear stiffness of the sand–steel interface increased with the increase in normal stress, interface roughness, or sand relative density. Then, considering the influence of initial shear stress, through the cyclic shear test, this work analyzed the shape of the loading and unloading curves and the development law of cumulative normal deformation, and discussed the change of loading and unloading shear stiffness under different stress level amplitudes and the residual deformation generated during the cycle. The research results showed that loose sand and dense sand generally shrunk in volume during the cycle. The initial loading process was similar to the case of static loading. In the later dynamic loading process, the shear shrinkage per cycle was relatively small and continued to develop. Additionally, it was found that the unloading stiffness of the sand–steel interface is always greater than the initial loading stiffness. As the number of cycles increases, the loading stiffness increases, and it may eventually approach the unloading stiffness.


2021 ◽  
Vol 6 (12) ◽  
pp. 168
Author(s):  
Auchib Reza ◽  
Ashutosh Sutra Dhar

Small diameter (42 mm) medium density polyethylene (MDPE) pipes are widely used in the gas distribution system in Canada and other countries. They are sometimes exposed to ground movements resulting from landslides or earthquakes. The current design guidelines for evaluating the pipes subjected to ground movement were developed for steel pipes of larger diameters and may not apply to flexible MDPE pipes. This paper evaluates 42 mm diameter MDPE pipes buried in loose sand under axial relative ground movement for developing a design method for the pipes. MDPE is a viscoelastic material; therefore, the behaviour of MDPE pipes exposed to landslides would depend on the rate of ground movements. In this research, full-scale laboratory tests were conducted to investigate the responses of buried pipes under various rates of relative axial displacement. Finite element modelling of the tests was used to interpret the observed behaviour using the continuum mechanics framework. The study revealed that the pulling force on the pipe depends on the rate of relative ground displacement (pulling rate). The nondimensional pulling force possessed a nonlinear relationship with the pulling rate. A rate-dependent interface friction angle could be used to calculate the maximum pulling forces using the conventional design guidelines for the pipes in loose sand. Based on the pulling force, the pipe wall strains can be estimated using the methods available for larger diameter pipes.


2021 ◽  
Vol 139 ◽  
pp. 104394
Author(s):  
Shun Liu ◽  
Xiaowei Tang ◽  
Yixiao Luan ◽  
Mahmood Ahmad

2021 ◽  
Vol 873 (1) ◽  
pp. 012091
Author(s):  
Bagus Endar B. Nurhandoko ◽  
M. Rizka Asmara Hadi ◽  
Kaswandhi Triyoso ◽  
Rio K. Martha ◽  
Sri Widowati ◽  
...  

Abstract The Lombok earthquake in 2018 was unique, the shocks occurred sequentially. Several major earthquakes were followed by thousands of aftershocks. The earthquake caused a devastating disaster which destroyed many homes, buildings including wells as the main fresh water supply in the Lombok Island. The focal mechanism of main earthquake shows a thrust fault mechanism. Lombok Island is originally a volcano Island which is still growing actively. Therefore surface of Island is dominated by volcanic materials, such as: volcanic rock, volcanic ash, pumice. This paper describes the phenomenon of sanding wells in Lombok, including the physical mechanisms among rock’s grains when vibrating earthquake waves. These earthquake waves can eliminate static friction between grains and reduce cohesion between grains of rock. Some subsurface images shows a strong correlation between damage grade and the existence of loose sand and hard rock.


Author(s):  
V. Panwar ◽  
R.K. Dutta

Purpose: The study presents the numerical study to investigate the bearing capacity of the rectangular footing on layered sand (dense over loose) using ABAQUS software. Design/methodology/approach: Finite element analysis was used in this study to investigate the bearing capacity of the rectangular footing on layered sand and subjected to inclined load. The layered sand was having an upper layer of dense sand of varied thickness (0.25 W to 2.0 W) and lower layer was considered as loose sand of infinite thickness. The various parameters varied were friction angle of the upper dense (41° to 46°) and lower loose (31° to 36°) layer of sand and load inclination (0° to 45°), where W is the width of the rectangular footing. Findings: As the thickness ratio increased from 0.00 to 2.00, the bearing capacity increased with each load inclination. The highest and lowest bearing capacity was observed at a thickness ratio of 2.00 and 0.00 respectively. The bearing capacity decreased as the load inclination increased from 0° to 45°. The displacement contour shifted toward the centre of the footing and back toward the application of the load as the thickness ratio increased from 0.25 to 1.25 and 1.50 to 2.00, respectively. When the load inclination was increased from 0° to 30°, the bearing capacity was reduced by 54.12 % to 86.96%, and when the load inclination was 45°, the bearing capacity was reduced by 80.95 % to 95.39 %. The results of dimensionless bearing capacity compare favorably with literature with an average deviation of 13.84 %. As the load inclination was changed from 0° to 45°, the displacement contours and failure pattern shifted in the direction of load application, and the depth of influence of the displacement contours and failure pattern below the footing decreased, with the highest and lowest influence observed along the depth corresponding to 0° and 45°, respectively. The vertical settlement underneath the footing decreased as the load inclination increased, and at 45°, the vertical settlement was at its lowest. As the load inclination increased from 0° to 45°, the minimum and maximum extent of influence in the depth of the upper dense sand layer decreased, with the least and highest extent of influence in the range of 0.50 to 0.50 and 1.75 to 2.00 times the width of the rectangular footing, respectively, corresponding to a load inclination of 45° and 0° Research limitations/implications: The results presented in this paper were based on the numerical study conducted on rectangular footing having length to width ratio of 1.5 and subjected to inclined load. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size of rectangular footing. engineers designing rectangular footings subjected to inclined load and resting on layered (dense over loose) sand. Originality/value: No numerical study of the bearing capacity of the rectangular footing under inclined loading, especially on layered soil (dense sand over loose sand) as well as the effect of the thickness ratio and depth of the upper sand layer on displacement contours and failure pattern, has been published. Hence, an attempt was made in this article to investigate the same.


2021 ◽  
Vol 31 (3) ◽  
pp. 152-176
Author(s):  
Priyanka Rawat ◽  
Rakesh Kumar Dutta

Abstract The aim of the present numerical study was to analyse the pressure settlement behaviour and bearing capacity of asymmetric plus shaped footing resting on loose sand overlying dense sand at varying embedment depth. The numerical investigation was carried out using ABAQUS software. The effect of depth of embedment, friction angle of upper loose and lower dense sand layer and thickness of upper loose sand on the bearing capacity of the asymmetric plus shaped footing was studied in this investigation. Further, the comparison of the results of the bearing capacity was made between the asymmetric and symmetric plus shaped footing. The results reveal that with increase in depth of embedment, the dimensionless bearing capacity of the footings increased. The highest increase in the dimensionless bearing capacity was observed at embedment ratio of 1.5. The increase in the bearing capacity was 12.62 and 11.40 times with respect to the surface footings F1 and F2 corresponding to a thickness ratio of 1.5. The lowest increase in the dimensionless bearing capacity was observed at embedment ratio of 0.1 and the corresponding increase in the bearing capacity was 1.05 and 1.02 times with respect to the surface footing for footings F1 and F2 at a thickness ratio of 1.5.


2021 ◽  
Author(s):  
Mingxin Zhao ◽  
Huaishan Liu ◽  
Qing Ma ◽  
Lei Xing ◽  
Qiuping Xia ◽  
...  

Abstract It is of great significance to study the damage and failure law of hydrate-bearing sediments for for exploration and development, as well as for warning secondary disasters such as tsunami and earthquake. The discrete element modeling and simulation method has the advantages of low cost, strong repeatability and accurate response to the microstructure of samples, therefore , the discrete element method is used to simulate and analyze the damage and failure law of hydrate-bearing sediments in this paper. First, a triaxial undrained shear teat model of hydrate-bearing sediments is established. by discrete element simulation software; Then, the effects of different influencing factors on the fracture characteristics of hydrate hydrate-bearing sediments is studied; Finally, the effects of different factors on the initiation stress and damage stress of hydrate sediments are analyzed, and the damage law of hydrate-bearing sediments is obtained. The results show that: (1) The cementation of hydrate particles is greater than its bearing effect, thus the lithology of sediments changes from loose sand body to brittle rock with the increase of hydrate saturation, resulting in the corresponding change of fracture characteristics from loose sand body failure to brittle rock failure. (2) With the increase of hydrate saturation, the initiation stress of sediment shows a step-by-step increase law, and the damage stress is positively correlated with the shear modulus. (3) The heterogeneity of hydrate distribution is closely related to the failure mode of sediments. With the increase of hydrate distribution heterogeneity, the initiation stress displays an increase-decrease-increase pattern while the damage stress shows a law of increasing and then decreasing, which has the high sensitivity to heterogeneity of hydrate distribution. The research results have certain theoretical reference significance for the exploitation practice of natural gas hydrate.


Sign in / Sign up

Export Citation Format

Share Document