A new approach for simulation of non-Gaussian processes

Author(s):  
Jing Li ◽  
Xin Wang
2019 ◽  
Vol 22 (2) ◽  
pp. 396-411
Author(s):  
José L. da Silva ◽  
Ludwig Streit

Abstract In this paper we investigate the form factors of paths for a class of non Gaussian processes. These processes are characterized in terms of the Mittag-Leffler function. In particular, we obtain a closed analytic form for the form factors, the Debye function, and can study their asymptotic decay.


2015 ◽  
Vol 19 ◽  
pp. 414-439 ◽  
Author(s):  
Francesco Russo ◽  
Frederi Viens

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 248
Author(s):  
Nan Chen ◽  
Xiao Hou ◽  
Qin Li ◽  
Yingda Li

Complex nonlinear turbulent dynamical systems are ubiquitous in many areas. Quantifying the model error and model uncertainty plays an important role in understanding and predicting complex dynamical systems. In the first part of this article, a simple information criterion is developed to assess the model error in imperfect models. This effective information criterion takes into account the information in both the equilibrium statistics and the temporal autocorrelation function, where the latter is written in the form of the spectrum density that permits the quantification via information theory. This information criterion facilitates the study of model reduction, stochastic parameterizations, and intermittent events. In the second part of this article, a new efficient method is developed to improve the computation of the linear response via the Fluctuation Dissipation Theorem (FDT). This new approach makes use of a Gaussian Mixture (GM) to describe the unperturbed probability density function in high dimensions and avoids utilizing Gaussian approximations in computing the statistical response, as is widely used in the quasi-Gaussian (qG) FDT. Testing examples show that this GM FDT outperforms qG FDT in various strong non-Gaussian regimes.


Sign in / Sign up

Export Citation Format

Share Document