fluctuation dissipation
Recently Published Documents


TOTAL DOCUMENTS

825
(FIVE YEARS 133)

H-INDEX

59
(FIVE YEARS 6)

Author(s):  
Mingyun Cao ◽  
Patrick H Diamond

Abstract An analysis of instability dynamics in a stochastic magnetic field is presented for the tractable case of the resistive interchange. Externally prescribed static magnetic perturbations convert the eigenmode problem to a stochastic differential equation, which is solved by the method of averaging. The dynamics are rendered multi-scale, due to the size disparity between the test mode and magnetic perturbations. Maintaining quasi-neutrality at all orders requires that small-scale convective cell turbulence be driven by disparate scale interaction. The cells in turn produce turbulent mixing of vorticity and pressure, which is calculated by fluctuation-dissipation type analyses, and are relevant to pump-out phenomena. The development of correlation between the ambient magnetic perturbations and the cells is demonstrated, showing that turbulence will ‘lock on’ to ambient stochasticity. Magnetic perturbations are shown to produce a magnetic braking effect on vorticity generation at large scale. Detailed testable predictions are presented. The relations of these findings to the results of available simulations and recent experiments are discussed.


2022 ◽  
Vol 924 (1) ◽  
pp. 8
Author(s):  
C. M. Espinoza ◽  
P. S. Moya ◽  
M. Stepanova ◽  
J. A. Valdivia ◽  
R. E. Navarro

Abstract Among the fundamental and most challenging problems of laboratory, space, and astrophysical plasma physics is to understand the relaxation processes of nearly collisionless plasmas toward quasi-stationary states and the resultant states of electromagnetic plasma turbulence. Recently, it has been argued that solar wind plasma β and temperature anisotropy observations may be regulated by kinetic instabilities such as the ion cyclotron, mirror, electron cyclotron, and firehose instabilities; and it has been argued that magnetic fluctuation observations are consistent with the predictions of the fluctuation–dissipation theorem, even far below the kinetic instability thresholds. Here, using in situ magnetic field and plasma measurements by the THEMIS satellite mission, we show that such regulation seems to occur also in the Earth’s magnetotail plasma sheet at the ion and electron scales. Regardless of the clear differences between the solar wind and the magnetotail environments, our results indicate that spontaneous fluctuations and their collisionless regulation are fundamental features of space and astrophysical plasmas, thereby suggesting the processes is universal.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Nathan G. Caldeira ◽  
Eduardo Folco Capossoli ◽  
Carlos A. D. Zarro ◽  
Henrique Boschi-Filho

AbstractIn this work we study fluctuations and dissipation of a string in a deformed anti-de Sitter (AdS) space at finite temperature and density. The deformed AdS space is a charged black hole solution of the Einstein–Maxwell–Dilaton action. In this background we take into account the backreaction on the horizon function from an exponential deformation of the AdS space. From this model we compute the admittance and study the influence of the temperature and the chemical potential on it. We calculate the two-point correlations functions, and the mean square displacement for bosonic and fermionic cases, from which we obtain the short and large time approximations. For the long time, we obtain a sub-diffusive regime $$\sim \log t$$ ∼ log t . Combining the results from the admittance and the correlations functions we check the fluctuation-dissipation theorem for bosonic and fermionic systems.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 46
Author(s):  
Dick Bedeaux ◽  
Signe Kjelstrup

A thermodynamic description of porous media must handle the size- and shape-dependence of media properties, in particular on the nano-scale. Such dependencies are typically due to the presence of immiscible phases, contact areas and contact lines. We propose a way to obtain average densities suitable for integration on the course-grained scale, by applying Hill’s thermodynamics of small systems to the subsystems of the medium. We argue that the average densities of the porous medium, when defined in a proper way, obey the Gibbs equation. All contributions are additive or weakly coupled. From the Gibbs equation and the balance equations, we then derive the entropy production in the standard way, for transport of multi-phase fluids in a non-deformable, porous medium exposed to differences in boundary pressures, temperatures, and chemical potentials. Linear relations between thermodynamic fluxes and forces follow for the control volume. Fluctuation-dissipation theorems are formulated for the first time, for the fluctuating contributions to fluxes in the porous medium. These give an added possibility for determination of the Onsager conductivity matrix for transport through porous media. Practical possibilities are discussed.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1630
Author(s):  
Keivan Esfarjani

We consider the problem of heat transport by vibrational modes between Langevin thermostats connected by a central device. The latter is anharmonic and can be subject to large temperature difference and thus be out of equilibrium. We develop a classical formalism based on the equation of motion method, the fluctuation–dissipation theorem and the Novikov theorem to describe heat flow in a multi-terminal geometry. We show that it is imperative to include a quartic term in the potential energy to insure stability and to properly describe thermal expansion. The latter also contributes to leading order in the thermal resistance, while the usually adopted cubic term appears in the second order. This formalism paves the way for accurate modeling of thermal transport across interfaces in highly non-equilibrium situations beyond perturbation theory.


Author(s):  
Aleksandr Petrosyan ◽  
Alessio Zaccone

Abstract We show how a relativistic Langevin equation can be derived from a Lorentz-covariant version of the Caldeira-Leggett particle-bath Lagrangian. In one of its limits, we identify the obtained equation with the Langevin equation used in contemporary extensions of statistical mechanics to the near-light-speed motion of a tagged particle in non-relativistic dissipative fluids. The proposed framework provides a more rigorous and first-principles form of the weakly-relativistic and partially-relativistic Langevin equations often quoted or postulated as ansatz in previous works. We then refine the aforementioned results to obtain a generalized Langevin equation valid for the case of both fully-relativistic particle and bath, using an analytical approximation obtained from numerics where the Fourier modes of the bath are systematically replaced with covariant plane-wave forms with a length-scale relativistic correction that depends on the space-time trajectory in a parabolic way. We discuss the implications of the apparent breaking of space-time translation and parity invariance, showing that these effects are not necessarily in contradiction with the assumptions of statistical mechanics. The intrinsically non-Markovian character of the fully relativistic generalised Langevin equation derived here, and of the associated fluctuation-dissipation theorem, is also discussed.


Author(s):  
Dick Bedeaux ◽  
Signe Kjelstrup

A thermodynamic description of nano-porous media must handle the size- and shape-dependence of the media properties. Such dependencies are typically due to the presence of immiscible phases, contact areas and contact lines. We propose a way to obtain average densities suitable for integration on the course grained scale, applying Hill's thermodynamics for small systems to the subsystems. we argue that the average densities of the porous medium, when defined in a proper way, obey the Gibbs equation. All contributions are additive or weakly coupled. From the Gibbs equation and the balance equations, we derive the entropy production in the standard way, for transport of multi-phase fluids in a non-deformable, porous medium exposed to di¤erences in boundary pressures, temperatures, and chemical potentials. Linear relations between thermodynamic fluxes and forces follow for the control volume. Fluctuation- dissipation theorems are formulated for the first time, for the fluctuating contributions to fluxes in the porous medium. These give an added possibility for determination of porous media permeabilities. Practical possibilities are further discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
S. Di Sabatino ◽  
P.-F. Loos ◽  
P. Romaniello

Using the simple (symmetric) Hubbard dimer, we analyze some important features of the GW approximation. We show that the problem of the existence of multiple quasiparticle solutions in the (perturbative) one-shot GW method and its partially self-consistent version is solved by full self-consistency. We also analyze the neutral excitation spectrum using the Bethe-Salpeter equation (BSE) formalism within the standard GW approximation and find, in particular, that 1) some neutral excitation energies become complex when the electron-electron interaction U increases, which can be traced back to the approximate nature of the GW quasiparticle energies; 2) the BSE formalism yields accurate correlation energies over a wide range of U when the trace (or plasmon) formula is employed; 3) the trace formula is sensitive to the occurrence of complex excitation energies (especially singlet), while the expression obtained from the adiabatic-connection fluctuation-dissipation theorem (ACFDT) is more stable (yet less accurate); 4) the trace formula has the correct behavior for weak (i.e., small U) interaction, unlike the ACFDT expression.


2021 ◽  
Vol 9 ◽  
Author(s):  
Petrus H. R. dos Anjos ◽  
Márcio S. Gomes-Filho ◽  
Washington S. Alves ◽  
David L. Azevedo ◽  
Fernando A. Oliveira

Growth in crystals can be usually described by field equations such as the Kardar-Parisi-Zhang (KPZ) equation. While the crystalline structure can be characterized by Euclidean geometry with its peculiar symmetries, the growth dynamics creates a fractal structure at the interface of a crystal and its growth medium, which in turn determines the growth. Recent work by Gomes-Filho et al. (Results in Physics, 104,435 (2021)) associated the fractal dimension of the interface with the growth exponents for KPZ and provides explicit values for them. In this work, we discuss how the fluctuations and the responses to it are associated with this fractal geometry and the new hidden symmetry associated with the universality of the exponents.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Manhyung Han ◽  
Jeonghyeok Park ◽  
Taewoong Lee ◽  
Jung Hoon Han

Sign in / Sign up

Export Citation Format

Share Document