scholarly journals A Missense Mutation in COL10A1 Gene in a Pakistani Consanguineous Family with Schmid Type Metaphyseal Chondrodysplasia

Author(s):  
Saima Mustafa
2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background: Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods: Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results: We found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion: Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.


2018 ◽  
Vol 33 (6) ◽  
pp. 1034-1037 ◽  
Author(s):  
M Ben Khelifa ◽  
F Ghieh ◽  
R Boudjenah ◽  
C Hue ◽  
D Fauvert ◽  
...  

2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background: Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods: Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 normal control donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results: We found that the phenotype of affected family members exhibited irregular dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion: Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of irregular dominance in MCDS.


2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background: Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods: Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results: We found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion: Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.


2014 ◽  
Vol 52 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Thalita Figueiredo ◽  
Uirá Souto Melo ◽  
André Luiz Santos Pessoa ◽  
Paulo Ribeiro Nobrega ◽  
João Paulo Kitajima ◽  
...  

2012 ◽  
Vol 158A (3) ◽  
pp. 622-625 ◽  
Author(s):  
Carlos A. Bacino ◽  
Luis A. Arriola ◽  
Joanna Wiszniewska ◽  
Penelope E. Bonnen

Sign in / Sign up

Export Citation Format

Share Document