scholarly journals Large Data Generalized Dynamic Fault Feature Extraction Algorithm Based on Intuitionistic Fuzzy-Rough Set Discernibility Matrix

2019 ◽  
pp. 1-24
Author(s):  
Zhang Chuanchao
Biometrics ◽  
2017 ◽  
pp. 1195-1219 ◽  
Author(s):  
Chiranji Lal Chowdhary ◽  
D. P. Acharjya

Diagnosis of cancer is of prime concern in recent years. Medical imaging is used to analyze these diseases. But, these images contain uncertainties due to various factors and thus intelligent techniques are essential to process these uncertainties. This paper hybridizes intuitionistic fuzzy set and rough set in combination with statistical feature extraction techniques. The hybrid scheme starts with image segmentation using intuitionistic fuzzy set to extract the zone of interest and then to enhance the edges surrounding it. Further feature extraction using gray-level co-occurrence matrix is presented. Additionally, rough set is used to engender all minimal reducts and rules. These rules then fed into a classifier to identify different zones of interest and to check whether these points contain decision class value as either cancer or not. The experimental analysis shows the overall accuracy of 98.3% and it is higher than the accuracy achieved by hybridizing fuzzy rough set model.


Author(s):  
Chiranji Lal Chowdhary ◽  
D. P. Acharjya

Diagnosis of cancer is of prime concern in recent years. Medical imaging is used to analyze these diseases. But, these images contain uncertainties due to various factors and thus intelligent techniques are essential to process these uncertainties. This paper hybridizes intuitionistic fuzzy set and rough set in combination with statistical feature extraction techniques. The hybrid scheme starts with image segmentation using intuitionistic fuzzy set to extract the zone of interest and then to enhance the edges surrounding it. Further feature extraction using gray-level co-occurrence matrix is presented. Additionally, rough set is used to engender all minimal reducts and rules. These rules then fed into a classifier to identify different zones of interest and to check whether these points contain decision class value as either cancer or not. The experimental analysis shows the overall accuracy of 98.3% and it is higher than the accuracy achieved by hybridizing fuzzy rough set model.


2011 ◽  
Vol 33 (7) ◽  
pp. 1625-1631 ◽  
Author(s):  
Lin Lian ◽  
Guo-hui Li ◽  
Hai-tao Wang ◽  
hao Tian ◽  
Shu-kui Xu

2012 ◽  
Vol 19 (10) ◽  
pp. 639-642 ◽  
Author(s):  
Qianwei Zhou ◽  
Guanjun Tong ◽  
Dongfeng Xie ◽  
Baoqing Li ◽  
Xiaobing Yuan

Sign in / Sign up

Export Citation Format

Share Document