Site-Specific Probabilistic Seismic-Hazard Assessment: Direct Amplitude-Based Approach

2006 ◽  
Vol 96 (2) ◽  
pp. 392-403 ◽  
Author(s):  
H.-H. Tsang
2017 ◽  
Vol 33 (4) ◽  
pp. 1433-1453 ◽  
Author(s):  
Sreeram Reddy Kotha ◽  
Dino Bindi ◽  
Fabrice Cotton

The increasing numbers of recordings at individual sites allows quantification of empirical linear site-response adjustment factors ( δS2 S s) from the ground motion prediction equation (GMPE) residuals. The δS2 S s are then used to linearly scale the ergodic GMPE predictions to obtain site-specific ground motion predictions in a partially non-ergodic Probabilistic Seismic Hazard Assessment (PSHA). To address key statistical and conceptual issues in the current practice, we introduce a novel empirical region- and site-specific PSHA methodology wherein, (1) site-to-site variability ( φ S2 S) is first estimated as a random-variance in a mixed-effects GMPE regression, (2) δS2 S s at new sites with strong motion are estimated using the a priori φ S2 S, and (3) the GMPE site-specific single-site aleatory variability σ ss,s is replaced with a generic site-corrected aleatory variability σ0. Comparison of region- and site-specific hazard curves from our method against the traditional ergodic estimates at 225 sites in Europe and Middle East shows an approximate 50% difference in predicted ground motions over a range of hazard levels—a strong motivation to increase seismological monitoring of critical facilities and enrich regional ground motion data sets.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Etoundi Delair Dieudonné Ndibi ◽  
Eddy Ferdinand Mbossi ◽  
Nguet Pauline Wokwenmendam ◽  
Bekoa Ateba ◽  
Théophile Ndougsa-Mbarga

2014 ◽  
Vol 85 (6) ◽  
pp. 1316-1327 ◽  
Author(s):  
C. Beauval ◽  
H. Yepes ◽  
L. Audin ◽  
A. Alvarado ◽  
J.-M. Nocquet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document