site response
Recently Published Documents


TOTAL DOCUMENTS

1064
(FIVE YEARS 302)

H-INDEX

40
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-33
Author(s):  
D. Chavan ◽  
T.G. Sitharam ◽  
P. Anbazhagan

Propagation of the earthquake motion towards the ground surface alters both the acceleration and frequency content of the motion. Acceleration time record and Fourier amplitude spectrum of the motion reveal changes in the acceleration and frequency content. However, Fourier amplitude spectrum fails to give frequency-time variation. Wavelet transform overcomes this difficulty. In the present study, site response analysis of a liquefiable soil domain has been investigated employing wavelet transform. Three earthquake motions with distinct predominant frequencies are considered. It is revealed that the moment soil undergoes initial liquefaction, it causes a spike in the acceleration time history. Frequency of the spikes is found to be greater than the predominant frequency of the acceleration-time history recorded at the ground surface from the analysis. Interestingly, the spikes belong to the sharp tips of the shear stress-shear strain curve. Immediately after the spike, acceleration deamplification is observed. Post-liquefaction deamplification (filtering) of the frequency components is also observed.


2022 ◽  
pp. 875529302110608
Author(s):  
Chuanbin Zhu ◽  
Fabrice Cotton ◽  
Hiroshi Kawase ◽  
Annabel Haendel ◽  
Marco Pilz ◽  
...  

Earthquake site responses or site effects are the modifications of surface geology to seismic waves. How well can we predict the site effects (average over many earthquakes) at individual sites so far? To address this question, we tested and compared the effectiveness of different estimation techniques in predicting the outcrop Fourier site responses separated using the general inversion technique (GIT) from recordings. Techniques being evaluated are (a) the empirical correction to the horizontal-to-vertical spectral ratio of earthquakes (c-HVSR), (b) one-dimensional ground response analysis (GRA), and (c) the square-root-impedance (SRI) method (also called the quarter-wavelength approach). Our results show that c-HVSR can capture significantly more site-specific features in site responses than both GRA and SRI in the aggregate, especially at relatively high frequencies. c-HVSR achieves a “good match” in spectral shape at ∼80%–90% of 145 testing sites, whereas GRA and SRI fail at most sites. GRA and SRI results have a high level of parametric and/or modeling errors which can be constrained, to some extent, by collecting on-site recordings.


2022 ◽  
Vol 22 (1) ◽  
pp. 41-63
Author(s):  
Janneke van Ginkel ◽  
Elmer Ruigrok ◽  
Jan Stafleu ◽  
Rien Herber

Abstract. Earthquake site response is an essential part of seismic hazard assessment, especially in densely populated areas. The shallow geology of the Netherlands consists of a very heterogeneous soft sediment cover, which has a strong effect on the amplitude of ground shaking. Even though the Netherlands is a low- to moderate-seismicity area, the seismic risk cannot be neglected, in particular, because shallow induced earthquakes occur. The aim of this study is to establish a nationwide site-response zonation by combining 3D lithostratigraphic models and earthquake and ambient vibration recordings. As a first step, we constrain the parameters (velocity contrast and shear-wave velocity) that are indicative of ground motion amplification in the Groningen area. For this, we compare ambient vibration and earthquake recordings using the horizontal-to-vertical spectral ratio (HVSR) method, borehole empirical transfer functions (ETFs), and amplification factors (AFs). This enables us to define an empirical relationship between the amplification measured from earthquakes by using the ETF and AF and the amplification estimated from ambient vibrations by using the HVSR. With this, we show that the HVSR can be used as a first proxy for site response. Subsequently, HVSR curves throughout the Netherlands are estimated. The HVSR amplitude characteristics largely coincide with the in situ lithostratigraphic sequences and the presence of a strong velocity contrast in the near surface. Next, sediment profiles representing the Dutch shallow subsurface are categorised into five classes, where each class represents a level of expected amplification. The mean amplification for each class, and its variability, is quantified using 66 sites with measured earthquake amplification (ETF and AF) and 115 sites with HVSR curves. The site-response (amplification) zonation map for the Netherlands is designed by transforming geological 3D grid cell models into the five classes, and an AF is assigned to most of the classes. This site-response assessment, presented on a nationwide scale, is important for a first identification of regions with increased seismic hazard potential, for example at locations with mining or geothermal energy activities.


2022 ◽  
Vol 11 (1) ◽  
pp. e001578
Author(s):  
Hidemasa Kawamura ◽  
Yasuhiro Komatsu ◽  
Kazumi Tanaka ◽  
Masafumi Kanamoto ◽  
Masaru Tobe ◽  
...  

A rapid response system is required in a radiotherapy department for patients experiencing a critical event when access to an emergency department is poor due to geographic location and the patient is immobilised with a fixation device. We, therefore, rebuilt the response system and tested it through onsite simulations. A multidisciplinary core group was created and onsite simulations were conducted using a Plan-Do-Study-Act cycle. We identified the important characteristics of our facility, including its distance from the emergency department; the presence of many staff with little direct contact with patients; the treatment room environment and patient fixation with radiotherapy equipment. We also examined processes in each phase of the emergency response: detecting an emergency, calling the medical emergency team (MET), MET transportation to the site and on-site response and patient transportation to the emergency department. The protocol was modified, and equipment was updated. On-site simulations were held with and without explanation of the protocol and training scenario in advance. The time for the MET to arrive at the site during a 2017 simulation prior to the present project was 7 min, whereas the time to arrive after the first simulation session was shortened to 5 min and was then shortened further to 4 min in the second session, despite no prior explanation of the situation. A multidisciplinary project for emergency response with on-site simulations was conducted at an isolated radiation facility. A carefully planned emergency response is important not only in heavy ion therapy facilities but also in other departments and facilities that do not have easy access to hospital emergency departments.


Sign in / Sign up

Export Citation Format

Share Document