scholarly journals A Hypothetical Upper Bound on the Heights of the Solutions of a Diophantine Equation with a Finite Number of Solutions

Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.

Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


2018 ◽  
Vol 8 (1) ◽  
pp. 109-114
Author(s):  
Apoloniusz Tyszka

Abstract We define a computable function f from positive integers to positive integers. We formulate a hypothesis which states that if a system S of equations of the forms xi· xj = xk and xi + 1 = xi has only finitely many solutions in non-negative integers x1, . . . , xi, then the solutions of S are bounded from above by f (2n). We prove the following: (1) the hypothesis implies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (3) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (4) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, thenMis computable.


Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.


Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.


2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.


Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


Sign in / Sign up

Export Citation Format

Share Document