scholarly journals Diophantine Equations with a Finite Number of Solutions: Craig Smorynski's Theorem, Harvey Friedman's Conjecture and Minhyong Kim's Guess

Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.

Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.


Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.


Author(s):  
Apoloniusz Tyszka

Matiyasevich's theorem states that there is no algorithm to decide whether or not a given Diophantine equation has a solution in non-negative integers. Smorynski's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. We prove: (1) Smorynski's theorem easily follows from Matiyasevich's theorem, (2 ) Hilbert's Tenth Problem for Q has a negative solution if and only if the set of all Diophantine equations with a finite number of rational solutions is not recursively enumerable.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


1958 ◽  
Vol 23 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Martin Davis ◽  
Hilary Putnam

Hilbert's tenth problem is to find an algorithm for determining whether or not a diophantine equation possesses solutions. A diophantine predicate (of positive integers) is defined to be one of the formwhere P is a polynomial with integral coefficients (positive, negative, or zero). Previous work has considered the variables as ranging over nonnegative integers; but we shall find it more useful here to restrict the range to positive integers, no essential change being thereby introduced. It is clear that the recursive unsolvability of Hilbert's tenth problem would follow if one could show that some non-recursive predicate were diophantine. In particular, it would suffice to show that every recursively enumerable predicate is diophantine. Actually, it would suffice to prove far less.


2018 ◽  
Vol 8 (1) ◽  
pp. 109-114
Author(s):  
Apoloniusz Tyszka

Abstract We define a computable function f from positive integers to positive integers. We formulate a hypothesis which states that if a system S of equations of the forms xi· xj = xk and xi + 1 = xi has only finitely many solutions in non-negative integers x1, . . . , xi, then the solutions of S are bounded from above by f (2n). We prove the following: (1) the hypothesis implies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (3) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (4) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, thenMis computable.


2015 ◽  
Vol 92 (2) ◽  
pp. 187-194
Author(s):  
FARZALI IZADI ◽  
RASOOL FOROOSHANI NAGHDALI ◽  
PETER GEOFF BROWN

In this paper we examine solutions in the Gaussian integers to the Diophantine equation $ax^{4}+by^{4}=cz^{2}$ for different choices of $a,b$ and $c$. Elliptic curve methods are used to show that these equations have a finite number of solutions or have no solution.


Sign in / Sign up

Export Citation Format

Share Document