integer solutions
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 60)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Jens Vinther Clausen ◽  
Richard Lusby ◽  
Stefan Ropke

A New Family of Valid-Inequalities for Dantzig-Wolfe Reformulation of Mixed Integer Linear Programs In “Consistency Cuts for Dantzig-Wolfe Reformulation,” Jens Vinther Clausen, Richard Lusby, and Stefan Ropke present a new family of valid inequalities to be applied to Dantzig-Wolfe reformulations with binary linking variables. They show that, for Dantzig-Wolfe reformulations of mixed integer linear programs that satisfy certain properties, it is enough to solve the linear programming relaxation of the Dantzig-Wolfe reformulation with all consistency cuts to obtain integer solutions. An example of this is the temporal knapsack problem; the effectiveness of the cuts is tested on a set of 200 instances of this problem, and the results are state-of-the-art solution times. For problems that do not satisfy these conditions, the cuts can still be used in a branch-and-cut-and-price framework. In order to show this, the cuts are applied to a set of generic mixed linear integer programs from the online library MIPLIB. These tests show the applicability of the cuts in general.


Author(s):  
Benson Schaeffer

In this paper I offer an algebraic proof by contradiction of Fermat’s Last Theorem. Using an alternative to the standard binomial expansion, (a+b) n = a n + b Pn i=1 a n−i (a + b) i−1 , a and b nonzero integers, n a positive integer, I show that a simple rewrite of the Fermat’s equation stating the theorem, A p + B p = (A + B − D) p , A, B, D and p positive integers, D < A < B, p ≥ 3 and prime, entails the contradiction, A(B − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 A i−1−j (A + B − D) j−1 # + B(A − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 B i−1−j (A + B − D) j−1 # = 0, the sum of two positive integers equal to zero. This contradiction shows that the rewrite has no non-trivial positive integer solutions and proves Fermat’s Last Theorem. AMS 2020 subject classification: 11A99, 11D41 Diophantine equations, Fermat’s equation ∗The corresponding author. E-mail: [email protected] 1 1 Introduction To prove Fermat’s Last Theorem, it suffices to show that the equation A p + B p = C p (1In this paper I offer an algebraic proof by contradiction of Fermat’s Last Theorem. Using an alternative to the standard binomial expansion, (a+b) n = a n + b Pn i=1 a n−i (a + b) i−1 , a and b nonzero integers, n a positive integer, I show that a simple rewrite of the Fermat’s equation stating the theorem, A p + B p = (A + B − D) p , A, B, D and p positive integers, D < A < B, p ≥ 3 and prime, entails the contradiction, A(B − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 A i−1−j (A + B − D) j−1 # + B(A − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 B i−1−j (A + B − D) j−1 # = 0, the sum of two positive integers equal to zero. This contradiction shows that the rewrite has no non-trivial positive integer solutions and proves Fermat’s Last Theorem.


2021 ◽  
Vol 56 (2) ◽  
pp. 263-270
Author(s):  
Zhongfeng Zhang ◽  
◽  
Alain Togbé ◽  

In this paper, we prove that the Ramanujan-Nagell type Diophantine equation \(Dx^2+k^n=B\) has at most three nonnegative integer solutions \((x, n)\) for \(k\) a prime and \(B, D\) positive integers.


Author(s):  
Elisa Bellah

Finding integer solutions to norm form equations is a classical Diophantine problem. Using the units of the associated coefficient ring, we can produce sequences of solutions to these equations. It is known that these solutions can be written as tuples of linear recurrence sequences. We show that for certain families of norm forms defined over quartic fields, there exist integrally equivalent forms making any one fixed coordinate sequence a linear divisibility sequence.


Author(s):  
Miao Yu ◽  
Viswanath Nagarajan ◽  
Siqian Shen

We consider a variant of the vehicle routing problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation-based linear-programming relaxation for this VRP. Specifically, we focus on algorithms for the “pricing problem,” which corresponds to the resource-constrained elementary shortest path problem. The first algorithm extends the pulse algorithm for which we derive a new bounding scheme on the maximum load of any route. The second algorithm is based on random coloring from parameterized complexity which can be also combined with other techniques in the literature for improving VRPs, including cutting planes and column enumeration. We conduct numerical studies using VRP benchmarks (with 50–957 nodes) and instances of a medical home care delivery problem using census data in Wayne County, Michigan. Using parallel computing, both pulse and random coloring can significantly improve column generation for solving the linear programming relaxations and we can obtain heuristic integer solutions with small optimality gaps. Combining random coloring with column enumeration, we can obtain improved integer solutions having less than 2% optimality gaps for most VRP benchmark instances and less than 1% optimality gaps for the medical home care delivery instances, both under a 30-minute computational time limit. The use of cutting planes (e.g., robust cuts) can further reduce optimality gaps on some hard instances, without much increase in the run time. Summary of Contribution: The vehicle routing problem (VRP) is a fundamental combinatorial problem, and its variants have been studied extensively in the literature of operations research and computer science. In this paper, we consider general-purpose algorithms for solving VRPs, including the column-generation approach for the linear programming relaxations of the integer programs of VRPs and the column-enumeration approach for seeking improved integer solutions. We revise the pulse algorithm and also propose a random-coloring algorithm that can be used for solving the elementary shortest path problem that formulates the pricing problem in the column-generation approach. We show that the parallel implementation of both algorithms can significantly improve the performance of column generation and the random coloring algorithm can improve the solution time and quality of the VRP integer solutions produced by the column-enumeration approach. We focus on algorithmic design for VRPs and conduct extensive computational tests to demonstrate the performance of various approaches.


2021 ◽  
Vol 9 (6) ◽  
pp. 931-938
Author(s):  
B. M. Cerna Maguiña ◽  
Janet Mamani Ramos

2021 ◽  
Vol 7 (4) ◽  
Author(s):  
Szabolcs Tengely ◽  
Maciej Ulas

AbstractLet $$A\subset \mathbb {N}_{+}$$ A ⊂ N + and by $$P_{A}(n)$$ P A ( n ) denotes the number of partitions of an integer n into parts from the set A. The aim of this paper is to prove several result concerning the existence of integer solutions of Diophantine equations of the form $$P_{A}(x)=P_{B}(y)$$ P A ( x ) = P B ( y ) , where A, B are certain finite sets.


Author(s):  
NGUYEN XUAN THO

Abstract In the 1993 Western Number Theory Conference, Richard Guy proposed Problem 93:31, which asks for integers n representable by ${(x+y+z)^3}/{xyz}$ , where $x,\,y,\,z$ are integers, preferably with positive integer solutions. We show that the representation $n={(x+y+z)^3}/{xyz}$ is impossible in positive integers $x,\,y,\,z$ if $n=4^{k}(a^2+b^2)$ , where $k,\,a,\,b\in \mathbb {Z}^{+}$ are such that $k\geq 3$ and $2\nmid a+b$ .


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ze Gu

A proportionally modular numerical semigroup is the set S a , b , c of nonnegative integer solutions to a Diophantine inequality of the form a x   mod   b ≤ c x , where a , b , and c are positive integers. A formula for the multiplicity of S a , b , c , that is, m S a , b , c = k b / a for some positive integer k , is given by A. Moscariello. In this paper, we give a new proof of the formula and determine a better bound for k . Furthermore, we obtain k = 1 for various cases and a formula for the number of the triples a , b , c such that k ≠ 1 when the number a − c is fixed.


Sign in / Sign up

Export Citation Format

Share Document