scholarly journals univariateML: An R package for maximum likelihood estimation of univariate densities

2019 ◽  
Vol 4 (44) ◽  
pp. 1863
Author(s):  
Jonas Moss
2019 ◽  
Vol 17 (2) ◽  
Author(s):  
Minh H. Pham ◽  
Chris Tsokos ◽  
Bong-Jin Choi

The generalized Pareto distribution (GPD) is a flexible parametric model commonly used in financial modeling. Maximum likelihood estimation (MLE) of the GPD was proposed by Grimshaw (1993). Maximum likelihood estimation of the GPD for censored data is developed, and a goodness-of-fit test is constructed to verify an MLE algorithm in R and to support the model-validation step. The algorithms were composed in R. Grimshaw’s algorithm outperforms functions available in the R package ‘gPdtest’. A simulation study showed the MLE method for censored data and the goodness-of-fit test are both reliable.


2017 ◽  
Author(s):  
Mollie E. Brooks ◽  
Kasper Kristensen ◽  
Koen J. van Benthem ◽  
Arni Magnusson ◽  
Casper W. Berg ◽  
...  

AbstractEcological phenomena are often measured in the form of count data. These data can be analyzed using generalized linear mixed models (GLMMs) when observations are correlated in ways that require random effects. However, count data are often zero-inflated, containing more zeros than would be expected from the standard error distributions used in GLMMs, e.g., parasite counts may be exactly zero for hosts with effective immune defenses but vary according to a negative binomial distribution for non-resistant hosts.We present a new R package, glmmTMB, that increases the range of models that can easily be fitted to count data using maximum likelihood estimation. The interface was developed to be familiar to users of the lme4 R package, a common tool for fitting GLMMs. To maximize speed and flexibility, estimation is done using Template Model Builder (TMB), utilizing automatic differentiation to estimate model gradients and the Laplace approximation for handling random effects. We demonstrate glmmTMB and compare it to other available methods using two ecological case studies.In general, glmmTMB is more flexible than other packages available for estimating zero-inflated models via maximum likelihood estimation and is faster than packages that use Markov chain Monte Carlo sampling for estimation; it is also more flexible for zero-inflated modelling than INLA, but speed comparisons vary with model and data structure. Our package can be used to fit GLMs and GLMMs with or without zero-inflation as well as hurdle models. By allowing ecologists to quickly estimate a wide variety of models using a single package, glmmTMB makes it easier to find appropriate models and test hypotheses to describe ecological processes.


Sign in / Sign up

Export Citation Format

Share Document