scholarly journals Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains

1984 ◽  
Vol 29 (4) ◽  
pp. 272-285
Author(s):  
Michal Křížek ◽  
Pekka Neittaanmäki
2016 ◽  
Vol 28 (3) ◽  
pp. 470-498
Author(s):  
ROBERT NÜRNBERG ◽  
EDWARD J. W. TUCKER

We consider a fully practical finite element approximation of the Cahn–Hilliard–Stokes system: $$\begin{align*} \gamma \tfrac{\partial u}{\partial t} + \beta v \cdot \nabla u - \nabla \cdot \left( \nabla w \right) & = 0 \,, \quad w= -\gamma \Delta u + \gamma ^{-1} \Psi ' (u) - \tfrac12 \alpha c'(\cdot,u) | \nabla \phi |^2\,, \\ \nabla \cdot (c(\cdot,u) \nabla \phi) & = 0\,,\quad \begin{cases} -\Delta v + \nabla p = \varsigma w \nabla u, \\ \nabla \cdot v = 0, \end{cases} \end{align*}$$ subject to an initial condition u0(.) ∈ [−1, 1] on the conserved order parameter u ∈ [−1, 1], and mixed boundary conditions. Here, γ ∈ $\mathbb{R}_{>0}$ is the interfacial parameter, α ∈ $\mathbb{R}_{\geq0}$ is the field strength parameter, Ψ is the obstacle potential, c(⋅, u) is the diffusion coefficient, and c′(⋅, u) denotes differentiation with respect to the second argument. Furthermore, w is the chemical potential, φ is the electro-static potential, and (v, p) are the velocity and pressure. The system has been proposed to model the manipulation of morphologies in organic solar cells with the help of an applied electric field and kinetics.


2011 ◽  
Vol 2011 ◽  
pp. 1-24 ◽  
Author(s):  
Guillaume Jouvet ◽  
Jacques Rappaz

The aim of this paper is to study a nonlinear stationary Stokes problem with mixed boundary conditions that describes the ice velocity and pressure fields of grounded glaciers under Glen's flow law. Using convex analysis arguments, we prove the existence and the uniqueness of a weak solution. A finite element method is applied with approximation spaces that satisfy the inf-sup condition, and a priori error estimates are established by using a quasinorm technique. Several algorithms (including Newton's method) are proposed to solve the nonlinearity of the Stokes problem and are proved to be convergent. Our results are supported by numerical convergence studies.


Sign in / Sign up

Export Citation Format

Share Document