Integral Type Curves for Advanced Decline Curve Analysis

Author(s):  
J.P. Spivey ◽  
J.M. Gatens ◽  
M.E. Semmelbeck ◽  
W.J. Lee
SPE Journal ◽  
2012 ◽  
Vol 18 (01) ◽  
pp. 97-113 ◽  
Author(s):  
Ayala H Luis F. ◽  
Peng Ye

Summary Rate-time decline-curve analysis is the technique most extensively used by engineers in the evaluation of well performance, production forecasting, and prediction of original fluids in place. Results from this analysis have key implications for economic decisions surrounding asset acquisition and investment planning in hydrocarbon production. State-of-the-art natural gas decline-curve analysis heavily relies on the use of liquid (oil) type curves combined with the concepts of pseudopressure and pseudotime and/or empirical curve fitting of rate-time production data using the Arps hyperbolic decline model. In this study, we present the analytical decline equation that models production from gas wells producing at constant pressure under boundary-dominated flow (BDF) which neither employs empirical concepts from Arps decline models nor necessitates explicit calculations of pseudofunctions. New-generation analytical decline equations for BDF are presented for gas wells producing at (1) full production potential under true wide-open decline and (2) partial production potential under less than wide-open decline. The proposed analytical model enables the generation of type-curves for the analysis of natural gas reservoirs producing at constant pressure and under BDF for both full and partial production potential. A universal, single-line gas type curve is shown to be straightforwardly derived for any gas well producing at its full potential under radial BDF. The resulting type curves can be used to forecast boundary-dominated performance and predict original gas in place without (1) iterative procedures, (2) prior knowledge of reservoir storage properties or geological data, and (3) pseudopressure or pseudotime transformations of production data obtained in the field.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Jiazheng Qin ◽  
Shiqing Cheng ◽  
Youwei He ◽  
Yang Wang ◽  
Dong Feng ◽  
...  

Nowadays, production performance evaluation of a multifractured horizontal well (MFHW) has attracted great attention. This paper presents a mathematical model of an MFHW with considering segmented fracture (SF) for better evaluation of fracture and reservoir properties. Each SF consists of two parts: fracture segment far from wellbore (FSFW) and fracture segment near to wellbore (FSNW) in segmented fracture model (SFM), which is different from fractures consists of only one segment in common fracture model (CFM). Employing the source function and Green's function, Newman's product method, Duhamel principle, Stehfest inversion algorithm, and Laplace transform, production solution of an MFHW can be obtained using SFM. Total production rate is mostly contributed from FSNW rather than FSFW in many cases; ignoring this phenomenon may lead to obvious erroneous in parameter interpretation. Thus, clear distinctions can be found between CFM and SFM on the compound type curves. By using decline curve analysis (DCA), the influences of sensitive parameters (e.g., dimensionless half-length, dimensionless production rate, conductivity, and distance between SF) on compound type curves are analyzed. The results of sensitivity analysis are benefit of parameter estimation during history matching.


Author(s):  
Arifur Rahman ◽  
Fatema Akter Happy ◽  
Mahbub Alam Hira ◽  
M. Enamul Hossain

Decline curve analysis is one of the most widely used production data analysis technique for forecasting whilst type curve analysis is a graphical representation technique for history matching and forecasting. The combination of both methods can estimate the reserves and the well/reservoir parameters simultaneously. The purpose of this study is to construct the new production decline curves to analyze the pressure and production data. These curves are constructed by combining decline curve and a type curve analysis technique that can estimate the existing reserves and determine the other well/reservoir parameters for gas wells. The accuracy of these parameter estimations depends on the quality and type of the pressure and production data available. This study illustrates the conventional decline curve that can be used to analyze the gas well performance data with type curves based on pseudo time function. On the other hand, log-log plots are used as a diagnostic tool to identify the appropriate reservoir model and analogous data trend. Pressure derivative and type curves are used to construct a radial model of the reservoir. In addition, Blasingame and Fetkovich type curves analysis are also presented in a convenient way. The decline curve analysis shows steady state production for a long time, then a decline is observed which indicates a boundary dominated flow. The Blasingame type curve matching points is going downward, which indicate the influence of another nearby well. The reservoir parameters that are obtained by using the decline curve and type curves analysis show a similar trend and close match for different approaches. These observations closely match results of different analysis. This analysis improves the likelihood of the results being satisfactory and reliable, though it changes with time until the end of the production period. This analysis technique can be extended to other type of well/reservoir system, including horizontal wells and fractured reservoirs.


1987 ◽  
Vol 2 (04) ◽  
pp. 637-656 ◽  
Author(s):  
M.J. Fetkovich ◽  
M.E. Vienot ◽  
M.D. Bradley ◽  
U.G. Kiesow

Sign in / Sign up

Export Citation Format

Share Document