scholarly journals Memory-assisted reinforcement learning for diverse molecular de novo design

2020 ◽  
Author(s):  
Thomas Blaschke ◽  
Ola Engkvist ◽  
Jürgen Bajorath ◽  
Hongming Chen

Abstract In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desirable properties using a scoring function. However, ligands generated by current RL methods so far tend to have relatively low diversity, and sometimes even result in duplicate structures when optimizing towards desired properties. Here, we propose a new method to address the low diversity issue in RL for molecular design. Memory-assisted RL is an extension of the known RL, with the introduction of a so-called memory unit. As proof of concept, we applied our method to generate structures with a desired AlogP value. In a second case study, we applied our method to design ligands for the dopamine type 2 receptor and the 5-hydroxytryptamine type 1A receptor. For both receptors, a machine learning model was developed to predict whether generated molecules were active or not for the receptor. In both case studies, it was found that memory-assisted RL led to the generation of more compounds predicted to be active having higher chemical diversity, thus achieving better coverage of chemical space of known ligands compared to established RL methods.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Blaschke ◽  
Ola Engkvist ◽  
Jürgen Bajorath ◽  
Hongming Chen

Abstract In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desirable properties using a scoring function. However, ligands generated by current RL methods so far tend to have relatively low diversity, and sometimes even result in duplicate structures when optimizing towards desired properties. Here, we propose a new method to address the low diversity issue in RL for molecular design. Memory-assisted RL is an extension of the known RL, with the introduction of a so-called memory unit. As proof of concept, we applied our method to generate structures with a desired AlogP value. In a second case study, we applied our method to design ligands for the dopamine type 2 receptor and the 5-hydroxytryptamine type 1A receptor. For both receptors, a machine learning model was developed to predict whether generated molecules were active or not for the receptor. In both case studies, it was found that memory-assisted RL led to the generation of more compounds predicted to be active having higher chemical diversity, thus achieving better coverage of chemical space of known ligands compared to established RL methods.


2020 ◽  
Author(s):  
Thomas Blaschke ◽  
Ola Engkvist ◽  
Jürgen Bajorath ◽  
Hongming Chen

Abstract In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desirable properties using a scoring function. However, ligands generated by current RL methods so far tend to have relatively low diversity, and sometimes even result in duplicate structures when optimizing towards particular properties. Here, we propose a new method to address the low diversity issue in RL. Memory-assisted RL is an extension of the known RL, with the introduction of a so-called memory unit. As proof of concept, we applied our method to generate structures with an optimized logP. In a second case study, we applied our method to design ligands for the dopamine 2 receptor and the 5-hydroxytryptamine 1A receptor. For both receptors, a machine learning model was developed to predict whether generated molecules were active or not for the receptor. In both case studies, it was found that memory-assisted RL led to the generation of more active compounds and with higher chemical diversity, thus achieving better coverage of chemical space of known ligands compared to established RL method.


Author(s):  
Thomas Blaschke ◽  
Ola Engkvist ◽  
Jürgen Bajorath ◽  
Hongming Chen

<div><div><div><p>In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desirable properties using a scoring function. However, ligands generated by current RL methods so far tend to have relatively low diversity, and sometimes even result in duplicate structures when optimizing towards particular properties. Here, we propose a new method to address the low diversity issue in RL. Memory-assisted RL is an extension of the known RL, with the introduction of a so-called memory unit.</p></div></div></div>


2020 ◽  
Author(s):  
Thomas Blaschke ◽  
Ola Engkvist ◽  
Jürgen Bajorath ◽  
Hongming Chen

<div><div><div><p>In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desirable properties using a scoring function. However, ligands generated by current RL methods so far tend to have relatively low diversity, and sometimes even result in duplicate structures when optimizing towards particular properties. Here, we propose a new method to address the low diversity issue in RL. Memory-assisted RL is an extension of the known RL, with the introduction of a so-called memory unit.</p></div></div></div>


2019 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman Van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard JP Van westen

<p></p><p>Over the last five years deep learning has progressed tremendously in both image recognition and natural language processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective method to generate novel chemical structures in the form of SMILES. However, ligands generated by current methods have so far provided relatively low diversity and do not fully cover the whole chemical space occupied by known ligands. Here, we propose a new method (DrugEx) to discover <i>de novo</i> drug-like molecules. DrugEx is an RNN model (generator) trained through reinforcement learning which was integrated with a special exploration strategy. As a case study we applied our method to design ligands against the adenosine A<sub>2A</sub> receptor. From ChEMBL data, a machine learning model (predictor) was created to predict whether generated molecules are active or not. Based on this predictor as the reward function, the generator was trained by reinforcement learning without any further data. We then compared the performance of our method with two previously published methods, REINVENT and ORGANIC. We found that candidate molecules our model designed, and predicted to be active, had a larger chemical diversity, and better covered the chemical space of known ligands compared to the state-of-the-art.</p><p></p>


2018 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman Van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard JP Van westen

<p>Over the last five years deep learning has progressed tremendously in both image recognition and natural language processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective method to generate novel chemical structures in the form of SMILES. However, ligands generated by current methods used to provide relatively little diversity and do not fully cover the whole chemical space occupied by known ligands. Here, we propose a new method (DrugEx) to discover <i>de novo</i> drug-like molecules. DrugEx is an RNN model (generator) trained through a special exploration strategy integrated into reinforcement learning. As a case study we applied our method to design ligands against the adenosine A<sub>2A</sub> receptor. From ChEMBL data, a machine learning model (predictor) was created to predict whether generated molecules are active or not. Based on this predictor as the reward function, the generator was trained by reinforcement learning without any further data. We then compared the performance of our method with two previously published methods, REINVENT and ORGANIC. We found that candidate molecules our model designed that were predicted to be active, had a larger chemical diversity, and better covered the chemical space of known ligands compared to the state-of-the-art.</p>


2019 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman Van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard JP Van westen

<p></p><p>Over the last five years deep learning has progressed tremendously in both image recognition and natural language processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective method to generate novel chemical structures in the form of SMILES. However, ligands generated by current methods have so far provided relatively low diversity and do not fully cover the whole chemical space occupied by known ligands. Here, we propose a new method (DrugEx) to discover <i>de novo</i> drug-like molecules. DrugEx is an RNN model (generator) trained through reinforcement learning which was integrated with a special exploration strategy. As a case study we applied our method to design ligands against the adenosine A<sub>2A</sub> receptor. From ChEMBL data, a machine learning model (predictor) was created to predict whether generated molecules are active or not. Based on this predictor as the reward function, the generator was trained by reinforcement learning without any further data. We then compared the performance of our method with two previously published methods, REINVENT and ORGANIC. We found that candidate molecules our model designed, and predicted to be active, had a larger chemical diversity, and better covered the chemical space of known ligands compared to the state-of-the-art.</p><p></p>


2018 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman Van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard JP Van westen

<p>Over the last five years deep learning has progressed tremendously in both image recognition and natural language processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective method to generate novel chemical structures in the form of SMILES. However, ligands generated by current methods used to provide relatively little diversity and do not fully cover the whole chemical space occupied by known ligands. Here, we propose a new method (DrugEx) to discover <i>de novo</i> drug-like molecules. DrugEx is an RNN model (generator) trained through a special exploration strategy integrated into reinforcement learning. As a case study we applied our method to design ligands against the adenosine A<sub>2A</sub> receptor. From ChEMBL data, a machine learning model (predictor) was created to predict whether generated molecules are active or not. Based on this predictor as the reward function, the generator was trained by reinforcement learning without any further data. We then compared the performance of our method with two previously published methods, REINVENT and ORGANIC. We found that candidate molecules our model designed that were predicted to be active, had a larger chemical diversity, and better covered the chemical space of known ligands compared to the state-of-the-art.</p>


Author(s):  
Oleksii Prykhodko ◽  
Simon Viet Johansson ◽  
Panagiotis-Christos Kotsias ◽  
Josep Arús-Pous ◽  
Esben Jannik Bjerrum ◽  
...  

<p> </p><p>Deep learning methods applied to drug discovery have been used to generate novel structures. In this study, we propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial neural network for de novo molecular design. We applied the method in two scenarios: one to generate random drug-like compounds and another to generate target-biased compounds. Our results show that the method works well in both cases: sampled compounds from the trained model can largely occupy the same chemical space as the training set and also generate a substantial fraction of novel compounds. Moreover, the drug-likeness score of compounds sampled from LatentGAN is also similar to that of the training set. Lastly, generated compounds differ from those obtained with a Recurrent Neural Network-based generative model approach, indicating that both methods can be used complementarily.</p><p> </p>


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Oleksii Prykhodko ◽  
Simon Viet Johansson ◽  
Panagiotis-Christos Kotsias ◽  
Josep Arús-Pous ◽  
Esben Jannik Bjerrum ◽  
...  

AbstractDeep learning methods applied to drug discovery have been used to generate novel structures. In this study, we propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial neural network for de novo molecular design. We applied the method in two scenarios: one to generate random drug-like compounds and another to generate target-biased compounds. Our results show that the method works well in both cases. Sampled compounds from the trained model can largely occupy the same chemical space as the training set and also generate a substantial fraction of novel compounds. Moreover, the drug-likeness score of compounds sampled from LatentGAN is also similar to that of the training set. Lastly, generated compounds differ from those obtained with a Recurrent Neural Network-based generative model approach, indicating that both methods can be used complementarily.


Sign in / Sign up

Export Citation Format

Share Document