Seabed Variability and Its Influence on Acoustic Prediction Uncertainty Model and Data Variance and Resolution: How Do We Quantify Uncertainty?

2002 ◽  
Author(s):  
Robert I. Odom
2008 ◽  
Author(s):  
Stephanie Tobin ◽  
John Edwards ◽  
Gifford Weary

2019 ◽  
Vol 5 (1) ◽  
pp. 223-226
Author(s):  
Max-Heinrich Laves ◽  
Sontje Ihler ◽  
Tobias Ortmaier ◽  
Lüder A. Kahrs

AbstractIn this work, we discuss epistemic uncertainty estimation obtained by Bayesian inference in diagnostic classifiers and show that the prediction uncertainty highly correlates with goodness of prediction. We train the ResNet-18 image classifier on a dataset of 84,484 optical coherence tomography scans showing four different retinal conditions. Dropout is added before every building block of ResNet, creating an approximation to a Bayesian classifier. Monte Carlo sampling is applied with dropout at test time for uncertainty estimation. In Monte Carlo experiments, multiple forward passes are performed to get a distribution of the class labels. The variance and the entropy of the distribution is used as metrics for uncertainty. Our results show strong correlation with ρ = 0.99 between prediction uncertainty and prediction error. Mean uncertainty of incorrectly diagnosed cases was significantly higher than mean uncertainty of correctly diagnosed cases. Modeling of the prediction uncertainty in computer-aided diagnosis with deep learning yields more reliable results and is therefore expected to increase patient safety. This will help to transfer such systems into clinical routine and to increase the acceptance of machine learning in diagnosis from the standpoint of physicians and patients.


Risks ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 98
Author(s):  
Patrick Beissner

This paper considers fundamental questions of arbitrage pricing that arises when the uncertainty model incorporates ambiguity about risk. This additional ambiguity motivates a new principle of risk- and ambiguity-neutral valuation as an extension of the paper by Ross (1976) (Ross, Stephen A. 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory 13: 341–60). In the spirit of Harrison and Kreps (1979) (Harrison, J. Michael, and David M. Kreps. 1979. Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory 20: 381–408), the paper establishes a micro-economic foundation of viability in which ambiguity-neutrality imposes a fair-pricing principle via symmetric multiple prior martingales. The resulting equivalent symmetric martingale measure set exists if the uncertain volatility in asset prices is driven by an ambiguous Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document