scholarly journals On representation varieties of 3–manifold groups

2017 ◽  
Vol 21 (4) ◽  
pp. 1931-1968 ◽  
Author(s):  
Michael Kapovich ◽  
John Millson
2011 ◽  
Vol 91 (1) ◽  
pp. 55-87 ◽  
Author(s):  
KAZUNORI NAKAMOTO ◽  
TAKESHI TORII

AbstractIn this paper we show that, in the stable case, when m≥2n−1, the cohomology ring H*(Repn(m)B) of the representation variety with Borel mold Repn(m)B and $H^{\ast }(F_{n}(\mathbb {C}^m)) \otimes H^{\ast }(\mathrm {Flag}(\mathbb { C}^n)) \otimes \Lambda (s_{1}, \ldots , s_{n-1})$ are isomorphic as algebras. Here the degree of si is 2m−3 when 1≤i<n. In the unstable cases, when m≤2n−2, we also calculate the cohomology group H*(Repn(m)B) when n=3,4 . In the most exotic case, when m=2 , Rep n (2)B is homotopy equivalent to Fn (ℂ2)×PGL n (ℂ) , where Fn (ℂ2) is the configuration space of n distinct points in ℂ2. We regard Rep n (2)B as a scheme over ℤ, and show that the Picard group Pic (Rep n (2)B) of Rep n (2)B is isomorphic to ℤ/nℤ. We give an explicit generator of the Picard group.


2003 ◽  
Vol 55 (4) ◽  
pp. 766-821 ◽  
Author(s):  
Thomas Kerler

AbstractWe develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology ofU(1)-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra= ℤ/2 n ⋊ Λ* ℝ2on the other side. We find that both TQFT's are SL(2; ℝ)-equivariant functors and, as such, are isomorphic. The SL(2; ℝ)-action in the Hennings construction comes from the natural action onand in the case of the Frohman–Nicas theory from the Hard–Lefschetz decomposition of theU(1)-moduli spaces given that they are naturally Kähler. The irreducible components of this TQFT, corresponding to simple representations of SL(2; ℤ) and Sp(2g; ℤ), thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg–Witten theories, Casson type theories for homology circlesà laDonaldson, higher rank gauge theories following Frohman and Nicas, and the ℤ=pℤ reductions of Reshetikhin.Turaev theories over the cyclotomic integers ℤ[ζp]. We also conjecture that the Hennings TQFT for quantum-sl2is the product of the Reshetikhin–Turaev TQFT and such a homological TQFT.


2018 ◽  
Vol 70 (3) ◽  
pp. 702-720
Author(s):  
Eugene Z. Xia

AbstractThe SL(2, ℂ)-representation varieties of punctured surfaces form natural families parameterized by monodromies at the punctures. In this paper, we compute the loci where these varieties are singular for the cases of one-holed and two-holed tori and the four-holed sphere. We then compute the de Rham cohomologies of these varieties of the one-holed torus and the four-holed sphere when the varieties are smooth via the Grothendieck theorem. Furthermore, we produce the explicit Gauß-Manin connection on the natural family of the smooth SL(2, ℂ)-representation varieties of the one-holed torus.


2018 ◽  
Vol 25 (3) ◽  
pp. 803-817
Author(s):  
Stefan Friedl ◽  
Takahiro Kitayama ◽  
Matthias Nagel

2014 ◽  
Vol 16 (04) ◽  
pp. 1350025 ◽  
Author(s):  
Alexandru Dimca ◽  
Ştefan Papadima

For a space, we investigate its CJL (cohomology jump loci), sitting inside varieties of representations of the fundamental group. To do this, for a CDG (commutative differential graded) algebra, we define its CJL, sitting inside varieties of flat connections. The analytic germs at the origin 1 of representation varieties are shown to be determined by the Sullivan 1-minimal model of the space. Up to a degree q, the two types of CJL have the same analytic germs at the origins, when the space and the algebra have the same q-minimal model. We apply this general approach to formal spaces (obtaining the degeneration of the Farber–Novikov spectral sequence), quasi-projective manifolds, and finitely generated nilpotent groups. When the CDG algebra has positive weights, we elucidate some of the structure of (rank one complex) topological and algebraic CJL: all their irreducible components passing through the origin are connected affine subtori, respectively rational linear subspaces. Furthermore, the global exponential map sends all algebraic CJL into their topological counterpart.


Sign in / Sign up

Export Citation Format

Share Document