cohomology group
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 38)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 40 ◽  
pp. 1-9
Author(s):  
Ebrahim Nasrabadi

‎Let $S$ be a commutative inverse semigroup with idempotent set $E$‎. ‎In this paper‎, ‎we show that for every $n\in \mathbb{N}_0$‎, ‎$n$-th Hochschild cohomology group of semigroup algebra $\ell^1(S)$ with coefficients in $\ell^\infty(S)$ and its $n$-th $\ell^1(E)$-module cohomology group‎, ‎are equal‎. ‎Indeed‎, ‎we prove that‎ ‎\[ \HH^{n}(\ell^1(S),\ell^\infty(S))=\HH^{n}_{\ell^1(E)}(\ell^1(S),\ell^\infty(S)),\] for all $n\geq 0$‎.


Author(s):  
Shuai Hou ◽  
Yunhe Sheng

In this paper, first, we introduce the notion of a generalized Reynolds operator on a [Formula: see text]-Lie algebra [Formula: see text] with a representation on [Formula: see text]. We show that a generalized Reynolds operator induces a 3-Lie algebra structure on [Formula: see text], which represents on [Formula: see text]. By this fact, we define the cohomology of a generalized Reynolds operator and study infinitesimal deformations of a generalized Reynolds operator using the second cohomology group. Then we introduce the notion of an NS-[Formula: see text]-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a generalized Reynolds operator induces an NS-[Formula: see text]-Lie algebra naturally. Thus NS-[Formula: see text]-Lie algebras can be viewed as the underlying algebraic structures of generalized Reynolds operators on [Formula: see text]-Lie algebras. Finally, we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a generalized Reynolds operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a [Formula: see text]-Lie algebra, which can serve as a special case of generalized Reynolds operators on 3-Lie algebras.


Author(s):  
BENJAMIN STEINBERG

Abstract Twisted étale groupoid algebras have recently been studied in the algebraic setting by several authors in connection with an abstract theory of Cartan pairs of rings. In this paper we show that extensions of ample groupoids correspond in a precise manner to extensions of Boolean inverse semigroups. In particular, discrete twists over ample groupoids correspond to certain abelian extensions of Boolean inverse semigroups, and we show that they are classified by Lausch’s second cohomology group of an inverse semigroup. The cohomology group structure corresponds to the Baer sum operation on twists. We also define a novel notion of inverse semigroup crossed product, generalizing skew inverse semigroup rings, and prove that twisted Steinberg algebras of Hausdorff ample groupoids are instances of inverse semigroup crossed products. The cocycle defining the crossed product is the same cocycle that classifies the twist in Lausch cohomology.


Author(s):  
Ido Efrat

Abstract For a prime number p and a free profinite group S on the basis X, let $S_{\left (n,p\right )}$ , $n=1,2,\dotsc ,$ be the p-Zassenhaus filtration of S. For $p>n$ , we give a word-combinatorial description of the cohomology group $H^2\left (S/S_{\left (n,p\right )},\mathbb {Z}/p\right )$ in terms of the shuffle algebra on X. We give a natural linear basis for this cohomology group, which is constructed by means of unitriangular representations arising from Lyndon words.


Author(s):  
Erik Mainellis

In this paper, we prove Leibniz analogues of results found in Peggy Batten’s 1993 dissertation. We first construct a Hochschild–Serre-type spectral sequence of low dimension, which is used to characterize the multiplier in terms of the second cohomology group with coefficients in the field. The sequence is then extended by a term and a Ganea sequence is constructed for Leibniz algebras. The maps involved with these exact sequences, as well as a characterization of the multiplier, are used to establish criteria for when a central ideal is contained in a certain set seen in the definition of unicentral Leibniz algebras. These criteria are then specialized, and we obtain conditions for when the center of the cover maps onto the center of the algebra.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Let $A$ denote the Steenrod algebra at the prime 2 and let $k = \mathbb Z_2.$ An open problem of homotopy theory is to determine a minimal set of $A$-generators for the polynomial ring $P_q = k[x_1, \ldots, x_q] = H^{*}(k^{q}, k)$ on $q$ generators $x_1, \ldots, x_q$ with $|x_i|= 1.$ Equivalently, one can write down explicitly a basis for the graded vector space $Q^{\otimes q} := k\otimes_{A} P_q$ in each non-negative degree $n.$ This is the content of the classical "hit problem" of Frank Peterson. Based on this problem, we are interested in the $q$-th algebraic transfer $Tr_q^{A}$ of W. Singer \cite{W.S1}, which is one of the useful tools for describing mod-2 cohomology of the algebra $A.$ This transfer is a linear map from the space of $GL_q(k)$-coinvariant $k\otimes _{GL_q(k)} P((P_q)_n^{*})$ of $Q^{\otimes q}$ to the $k$-cohomology group of the Steenrod algebra, ${\rm Ext}_{A}^{q, q+n}(k, k).$ Here $GL_q(k)$ is the general linear group of degree $q$ over the field $k,$ and $P((P_q)_n^{*})$ is the primitive part of $(P_q)^{*}_n$ under the action of $A.$ The present paper is to investigate this algebraic transfer for the cohomological degree $q = 4.$ More specifically, basing the techniques of the hit problem of four variables, we explicitly determine the structure of $k\otimes _{GL_4(k)} P((P_4)_{n}^{*})$ in some generic degrees $n.$ Applying these results and a representation of the rank 4 transfer over the lambda algebra, we show that $Tr_4^{A}$ is an isomorphism in respective degrees. Also, we give some conjectures on the dimensions of $k\otimes_{GL_q(k)} ((P_4)_n^{*})$ for the remaining degrees $n.$ As a consequence, Singer's conjecture for the algebraic transfer is true in the rank 4 case. This study and our previous results \cite{D.P11, D.P12} have been provided a panorama of the behavior of $Tr_4^{A}.$


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Brandon Alberts ◽  
Evan O’Dorney

AbstractWe utilize harmonic analytic tools to count the number of elements of the Galois cohomology group $$f\in H^1(K,T)$$ f ∈ H 1 ( K , T ) with discriminant-like invariant $$\text {inv}(f)\le X$$ inv ( f ) ≤ X as $$X\rightarrow \infty $$ X → ∞ . Specifically, Poisson summation produces a canonical decomposition for the corresponding generating series as a sum of Euler products for a very general counting problem. This type of decomposition is exactly what is needed to compute asymptotic growth rates using a Tauberian theorem. These new techniques allow for the removal of certain obstructions to known results and answer some outstanding questions on the generalized version of Malle’s conjecture for the first Galois cohomology group.


Author(s):  
Said Boulmane

The purpose of this paper is to prove that the second cohomology group H 2 A , F of a left alternative algebra A over an algebraically closed field F of characteristic 0 can be interpreted as the set of equivalent classes of one-dimensional central extensions of A .


Author(s):  
B. O. Bainson ◽  
N. D. Gilbert

We adapt and generalize results of Loganathan on the cohomology of inverse semigroups to the cohomology of ordered groupoids. We then derive a five-term exact sequence in cohomology from an extension of ordered groupoids, and show that this sequence leads to a classification of extensions by a second cohomology group. Our methods use structural ideas in cohomology as far as possible, rather than computation with cocycles.


Sign in / Sign up

Export Citation Format

Share Document