Mean curvature flow in a Riemannian manifold endowed with a Killing vector field

2020 ◽  
Vol 308 (2) ◽  
pp. 435-472
Author(s):  
Liangjun Weng
Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 43
Author(s):  
Włodzimierz Jelonek

In this paper, we characterize neutral Kähler surfaces in terms of their positive twistor bundle. We prove that an O+,+(2,2)-oriented four-dimensional neutral semi-Riemannian manifold (M,g) admits a complex structure J with ΩJ∈⋀−M, such that (M,g,J) is a neutral-Kähler manifold if and only if the twistor bundle (Z1(M),gc) admits a vertical Killing vector field.


1967 ◽  
Vol 19 ◽  
pp. 439-446 ◽  
Author(s):  
Kentaro Yano

H. Liebmann (3) and W. Süss (7) provedTheorem A. The only convex closed hypersurface with constant mean curvature in a Euclidean space is a sphere.Y. Katsurada (1; 2) gave the following generalization.Theorem B. Let M be an orientable Einstein space which admits a proper conformai Killing vector field, that is, a vector field generating a local one-parameter group of conformai transformations which is not that of isometries, and S a closed orientable hypersurface in M whose first mean curvature is constant. If the inner product of the conformai Killing vector field and the normal to the hypersurface has fixed sign on S, then every point of S is umbilical.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1139 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh ◽  
Amira A. Ishan

In this article, we study Jacobi-type vector fields on Riemannian manifolds. A Killing vector field is a Jacobi-type vector field while the converse is not true, leading to a natural question of finding conditions under which a Jacobi-type vector field is Killing. In this article, we first prove that every Jacobi-type vector field on a compact Riemannian manifold is Killing. Then, we find several necessary and sufficient conditions for a Jacobi-type vector field to be a Killing vector field on non-compact Riemannian manifolds. Further, we derive some characterizations of Euclidean spaces in terms of Jacobi-type vector fields. Finally, we provide examples of Jacobi-type vector fields on non-compact Riemannian manifolds, which are non-Killing.


1955 ◽  
Vol 9 ◽  
pp. 99-109 ◽  
Author(s):  
Jun-Ichi Hano

In this paper we establish some theorems about the group of affine transformations on a Riemannian manifold. First we prove a decomposition theorem (Theorem 1) of the largest connected group of affine transformations on a simply connected complete Riemannian manifold, which corresponds to the decomposition theorem of de Rham [4] for the manifold. In the case of the largest group of isometries, a theorem of the same type is found in de Rham’s paper [4] in a weaker form. Using Theorem 1 we obtain a sufficient condition for an infinitesimal affine transformation to be a Killing vector field (Theorem 2). This result includes K. Yano’s theorem [13] which states that on a compact Riemannian manifold an infinitesimal affine transformation is always a Killing vector field. His proof of the theorem depends on an integral formula which is valid only for a compact manifold. Our method is quite different and is based on a result [11] of K. Nomizu.


1958 ◽  
Vol 13 ◽  
pp. 63-68 ◽  
Author(s):  
Shoshichi Kobayashi

The purpose of this paper is to prove the followingTheorem. Let M be a Riemannian manifold of dimension n and let ξ be a Killing vector field (i.e., infinitesimal isometry) of M. Let F be the set of points x of M where ξ vanishes and let F = ∪ Vi, where the Vi’s are the connected components of F. Then (assuming F to be non-empty)


Author(s):  
Jiaxi Huang ◽  
Daniel Tataru

AbstractThe skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in $${{\mathbb {R}}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension $$d\ge 4$$ d ≥ 4 .


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 307
Author(s):  
Sharief Deshmukh ◽  
Amira Ishan ◽  
Suha B. Al-Shaikh ◽  
Cihan Özgür

In this article, it has been observed that a unit Killing vector field ξ on an n-dimensional Riemannian manifold (M,g), influences its algebra of smooth functions C∞(M). For instance, if h is an eigenfunction of the Laplace operator Δ with eigenvalue λ, then ξ(h) is also eigenfunction with same eigenvalue. Additionally, it has been observed that the Hessian Hh(ξ,ξ) of a smooth function h∈C∞(M) defines a self adjoint operator ⊡ξ and has properties similar to most of properties of the Laplace operator on a compact Riemannian manifold (M,g). We study several properties of functions associated to the unit Killing vector field ξ. Finally, we find characterizations of the odd dimensional sphere using properties of the operator ⊡ξ and the nontrivial solution of Fischer–Marsden differential equation, respectively.


Sign in / Sign up

Export Citation Format

Share Document