Protein Fold Recognition Using Self-Organizing Map Neural Network

2016 ◽  
Vol 11 (4) ◽  
pp. 451-458 ◽  
Author(s):  
Ozlem Polat ◽  
Zümray Dokur
2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Wessam Elhefnawy ◽  
Min Li ◽  
Jianxin Wang ◽  
Yaohang Li

Abstract Background One of the most essential problems in structural bioinformatics is protein fold recognition. In this paper, we design a novel deep learning architecture, so-called DeepFrag-k, which identifies fold discriminative features at fragment level to improve the accuracy of protein fold recognition. DeepFrag-k is composed of two stages: the first stage employs a multi-modal Deep Belief Network (DBN) to predict the potential structural fragments given a sequence, represented as a fragment vector, and then the second stage uses a deep convolutional neural network (CNN) to classify the fragment vector into the corresponding fold. Results Our results show that DeepFrag-k yields 92.98% accuracy in predicting the top-100 most popular fragments, which can be used to generate discriminative fragment feature vectors to improve protein fold recognition. Conclusions There is a set of fragments that can serve as structural “keywords” distinguishing between major protein folds. The deep learning architecture in DeepFrag-k is able to accurately identify these fragments as structure features to improve protein fold recognition.


2014 ◽  
Vol 30 (13) ◽  
pp. 1850-1857 ◽  
Author(s):  
Pooya Zakeri ◽  
Ben Jeuris ◽  
Raf Vandebril ◽  
Yves Moreau

2002 ◽  
Vol 21 (12) ◽  
pp. 1193-1196 ◽  
Author(s):  
Lin Zhang ◽  
Al Fortier ◽  
David C. Bartel

Sign in / Sign up

Export Citation Format

Share Document