scholarly journals Loss distribution approach for operational risk capital modelling under Basel II: Combining different data sources for risk estimation

2013 ◽  
Vol 2 (3) ◽  
pp. 33-57 ◽  
Author(s):  
Pavel Shevchenko ◽  
Gareth Peters

The management of operational risk in the banking industry has undergone significant changes over the last decade due to substantial changes in operational risk environment. Globalization, deregulation, the use of complex financial products and changes in information technology have resulted in exposure to new risks very different from market and credit risks. In response, Basel Committee for banking Supervision has developed a regulatory framework, referred to as Basel II, that introduced operational risk category and corresponding capital requirements. Over the past five years, major banks in most parts of the world have received accreditation under the Basel II Advanced Measurement Approach (AMA) by adopting the loss distribution approach (LDA) despite there being a number of unresolved methodological challenges in its implementation. Different approaches and methods are still under hot debate. In this paper, we review methods proposed in the literature for combining different data sources (internal data, external data and scenario analysis) which is one of the regulatory requirement for AMA.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoqian Zhu ◽  
Jianping Li ◽  
Jianming Chen ◽  
Yingqi YangHuo ◽  
Lijun Gao ◽  
...  

It is generally accepted that the choice of severity distribution in loss distribution approach has a significant effect on the operational risk capital estimation. However, the usually used parametric approaches with predefined distribution assumption might be not able to fit the severity distribution accurately. The objective of this paper is to propose a nonparametric operational risk modeling approach based on Cornish-Fisher expansion. In this approach, the samples of severity are generated by Cornish-Fisher expansion and then used in the Monte Carlo simulation to sketch the annual operational loss distribution. In the experiment, the proposed approach is employed to calculate the operational risk capital charge for the overall Chinese banking. The experiment dataset is the most comprehensive operational risk dataset in China as far as we know. The results show that the proposed approach is able to use the information of high order moments and might be more effective and stable than the usually used parametric approach.


Author(s):  
Răzvan Tudor ◽  
Dumitru Badea

Abstract This paper aims at covering and describing the shortcomings of various models used to quantify and model the operational risk within insurance industry with a particular focus on Romanian specific regulation: Norm 6/2015 concerning the operational risk issued by IT systems. While most of the local insurers are focusing on implementing the standard model to compute the Operational Risk solvency capital required, the local regulator has issued a local norm that requires to identify and assess the IT based operational risks from an ISO 27001 perspective. The challenges raised by the correlations assumed in the Standard model are substantially increased by this new regulation that requires only the identification and quantification of the IT operational risks. The solvency capital requirement stipulated by the implementation of Solvency II doesn’t recommend a model or formula on how to integrate the newly identified risks in the Operational Risk capital requirements. In this context we are going to assess the academic and practitioner’s understanding in what concerns: The Frequency-Severity approach, Bayesian estimation techniques, Scenario Analysis and Risk Accounting based on risk units, and how they could support the modelling of operational risk that are IT based. Developing an internal model only for the operational risk capital requirement proved to be, so far, costly and not necessarily beneficial for the local insurers. As the IT component will play a key role in the future of the insurance industry, the result of this analysis will provide a specific approach in operational risk modelling that can be implemented in the context of Solvency II, in a particular situation when (internal or external) operational risk databases are scarce or not available.


Sign in / Sign up

Export Citation Format

Share Document