scholarly journals An Effective Global Computational Algorithm for a class of Generalized Linear Multiplicative Programs

Author(s):  
Bo Zhang ◽  
Yuelin Gao ◽  
Xia Liu ◽  
Xiaoli Huang
Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Mei Ling Huang ◽  
Xiang Raney-Yan

The high quantile estimation of heavy tailed distributions has many important applications. There are theoretical difficulties in studying heavy tailed distributions since they often have infinite moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean. The new estimator has good asymptotic properties as well as it provides a computational algorithm for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations. Finally, the applications on two real-world examples are provided.


2014 ◽  
Vol 11 (97) ◽  
pp. 20140320 ◽  
Author(s):  
Gabriel Rosser ◽  
Ruth E. Baker ◽  
Judith P. Armitage ◽  
Alexander G. Fletcher

Most free-swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. A key open question concerns varying mechanisms by which reorientation occurs. We combine mathematical modelling with analysis of a large tracking dataset to study the poorly understood reorientation mechanism in the monoflagellate species Rhodobacter sphaeroides . The flagellum on this species rotates counterclockwise to propel the bacterium, periodically ceasing rotation to enable reorientation. When rotation restarts the cell body usually points in a new direction. It has been assumed that the new direction is simply the result of Brownian rotation. We consider three variants of a self-propelled particle model of bacterial motility. The first considers rotational diffusion only, corresponding to a non-chemotactic mutant strain. Two further models incorporate stochastic reorientations, describing ‘run-and-tumble’ motility. We derive expressions for key summary statistics and simulate each model using a stochastic computational algorithm. We also discuss the effect of cell geometry on rotational diffusion. Working with a previously published tracking dataset, we compare predictions of the models with data on individual stopping events in R. sphaeroides . This provides strong evidence that this species undergoes some form of active reorientation rather than simple reorientation by Brownian rotation.


Author(s):  
K. L. Teo ◽  
K. H. Wong

AbstractIn a paper by Teo and Jennings, a constraint transcription is used together with the concept of control parametrisation to devise a computational algorithm for solving a class of optimal control problems involving terminal and continuous state constraints of inequality type. The aim of this paper is to extend the results to a more general class of constrained optimal control problems, where the problem is also subject to terminal equality state constraints. For illustration, a numerical example is included.


Sign in / Sign up

Export Citation Format

Share Document