scholarly journals On moduli spaces for finite-order jets of linear connections

Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 2035-2044 ◽  
Author(s):  
Adrián Gordillo ◽  
José Navarro

We describe the ringed-space structure of moduli spaces of jets of linear connections (at a point) as orbit spaces of certain linear representations of the general linear group. Then, we use this fact to prove that the only (scalar) differential invariants associated to linear connections are constant functions, as well as to recover various expressions appearing in the literature regarding the dimensions of generic strata of these moduli spaces.

1956 ◽  
Vol 10 ◽  
pp. 97-100 ◽  
Author(s):  
Jun-Ichi Hano ◽  
Hideki Ozeki

In this note we show in § 1, as the main result, that any connected Lie subgroup of the general linear group GL(n, R) can be realized as the holonomy group of a linear connection, i.e. the homogeneous holonomy group of the associeted affine connection, defined on an affine space of dimension n (n ≧ 2).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ivan Matić

AbstractLet {G_{n}} denote either the group {\mathrm{SO}(2n+1,F)} or {\mathrm{Sp}(2n,F)} over a non-archimedean local field of characteristic different than two. We study parabolically induced representations of the form {\langle\Delta\rangle\rtimes\sigma}, where {\langle\Delta\rangle} denotes the Zelevinsky segment representation of the general linear group attached to the segment Δ, and σ denotes a discrete series representation of {G_{n}}. We determine the composition series of {\langle\Delta\rangle\rtimes\sigma} in the case when {\Delta=[\nu^{a}\rho,\nu^{b}\rho]} where a is half-integral.


2015 ◽  
Vol 469 ◽  
pp. 169-203 ◽  
Author(s):  
Seyed Hassan Alavi ◽  
John Bamberg ◽  
Cheryl E. Praeger

1969 ◽  
Vol 21 ◽  
pp. 106-135 ◽  
Author(s):  
Norbert H. J. Lacroix

The problem of classifying the normal subgroups of the general linear group over a field was solved in the general case by Dieudonné (see 2 and 3). If we consider the problem over a ring, it is trivial to see that there will be more normal subgroups than in the field case. Klingenberg (4) has investigated the situation over a local ring and has shown that they are classified by certain congruence groups which are determined by the ideals in the ring.Klingenberg's solution roughly goes as follows. To a given ideal , attach certain congruence groups and . Next, assign a certain ideal (called the order) to a given subgroup G. The main result states that if G is normal with order a, then ≧ G ≧ , that is, G satisfies the so-called ladder relation at ; conversely, if G satisfies the ladder relation at , then G is normal and has order .


Sign in / Sign up

Export Citation Format

Share Document