A theorem on minimal degrees

1997 ◽  
Vol 31 (4) ◽  
pp. 539-544 ◽  
Author(s):  
J. R. Shoenfield

In their original paper on degrees [3], Kleene and Post showed that there is a degree between 0 and 0′. Later, Friedberg [1] and Muchnik [4] showed that there is a recursively enumerable degree between 0 and 0′. Since then, this phenomenon has been repeated several times: a result has been proved for degrees, and then, after considerable additional effort, it has been proved for recursively enumerable degrees.There are some obvious respects in which that set of all degrees differs from the set of recursively enumerable degrees; e.g., the former is uncountable and has no largest member.


1971 ◽  
Vol 36 (2) ◽  
pp. 229-239 ◽  
Author(s):  
Stål Aanderaa ◽  
Dag Belsnes

The aim of this paper is to study tag systems as defined by Post [Post 1943, pp. 203–205 and Post, 1965, pp. 370–373]. The existence of a tag system with unsolvable halting problem was proved by Minsky by constructing a universal tag system [Minsky 1961, see also Cocke and Minsky 1964, Wang 1963, and Minsky 1967, pp. 267–273]. Hence the halting problem of a tag system can be of the complete degree 0′. We shall prove that the halting problem for a tag system can have an arbitrary (recursively enumerable) degree of undecidability (Corollary III).A related problem arises when we ask if there exists a uniform procedure for determining, given a tag system, whether or not there is any word on which the tag system does not halt, an “immortal” word in the system. The alternative, of course, being that the system eventually halts on every (finite) word. It is shown here that this problem, the immortality problem for tag systems, is recursively unsolvable of degree 0″ (Corollary II).



1966 ◽  
Vol 31 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Donald A. Martin

In [1], p. 171, Sacks asks (question (Q5)) whether there is a recursively enumerable degree of unsolvability d such that for all n ≧ 0. Sacks points out that the set of conditions which d must satisfy is not arithmetical. For this reason he suggests that a proof of (Q5) might require some new combinatorial device. The purpose of this note is to show how (Q5) may be proved simply by extending the methods of [l].2



1997 ◽  
Vol 62 (4) ◽  
pp. 1215-1240 ◽  
Author(s):  
Rodney G. Downey ◽  
Steffen Lempp

AbstractWe prove that a (recursively) enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no m-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.



1993 ◽  
Vol 58 (3) ◽  
pp. 824-859 ◽  
Author(s):  
Richard A. Shore ◽  
Theodore A. Slaman

In recent work, Cooper [3, 1990] has extended results of Jockusch and Shore [6, 1984] to show that the Turing jump is definable in the structure given by the Turing degrees and the ordering of Turing reducibility. In his definition of x′ from x, Cooper identifies an order-theoretic property shared by all of the degrees that are recursively enumerable in x and above x. He then shows that x′ is the least upper bound of all the degrees with this property. Thus, the jump of x is identified by comparing the recursively enumerable degrees with other degrees which are not recursively enumerable. Of course, once the jump operator is known to be definable, the relation of jump equivalence x′ = y′ is also known to be a definable relation on x and y. If we consider how much of the global theory of the Turing degrees is sufficient for Cooper's methods, it is immediately clear that his methods can be implemented to show that the jump operator and its weakening to the relation of jump equivalence are definable in any ideal closed under the Turing jump. However, his methods do not localize to , the degrees, or to the recursively enumerable degrees.This paper fits, as do Shore and Slaman [16, 1990] and [17, to appear], within the general project to develop an understanding of the relationship between the local degree-theoretic properties of a recursively enumerable set A and its jump class. For an analysis of the possibility of defining jump equivalence in , consult Shore [15, to appear] who shows that the relation x(3) = y(3) is definable. In this paper, we will restrict our attention to definitions expressed completely in ℛ (Note: All sets and degrees discussed for the remainder of this paper will be recursively enumerable.) Ultimately, one would like to find some degree-theoretic properties definable in terms of the ordering of Turing reducibility and quantifiers over the recursively enumerable degrees that would define the relation of jump equivalence or define one or more of the jump classes Hn = {w∣ wn = 0n+1} or Ln = {w ∣ wn = 0n}. Such a result could very likely then be used as a springboard to other general definability results for the recursively enumerable degrees. It would be especially interesting to know whether every recursively enumerable degree is definable and whether every arithmetical degree-invariant property of the recursively enumerable sets is definable in .





1996 ◽  
Vol 94 (1) ◽  
pp. 221-246 ◽  
Author(s):  
Rod Downey ◽  
Richard A. Shore


1966 ◽  
Vol 31 (2) ◽  
pp. 159-168 ◽  
Author(s):  
C. E. M. Yates

Our principal result is that there exist two incomparable recursively enumerable degrees whose greatest lower bound in the upper semilattice of degrees is 0. This was conjectured by Sacks [5]. As a secondary result, we prove that on the other hand there exists a recursively enumerable degree a < 0(1) such that for no non-zero recursively enumerable degree b is 0 the greatest lower bound of a and b.The proof of the main theorem involves a method that we have developed elsewhere [8] to deal with situations in which a partial recursive functional may interfere infinitely often with an opposed requirement of lower priority.



2018 ◽  
Vol 59 (1) ◽  
pp. 91-107
Author(s):  
David R. Belanger ◽  
Richard A. Shore


1974 ◽  
Vol 39 (4) ◽  
pp. 655-660 ◽  
Author(s):  
S. B. Cooper

A. H. Lachlan [2] and C. E. M. Yates [4] independently showed that minimal pairs of recursively enumerable (r.e.) degrees exist. Lachlan and Richard Ladner have shown (unpublished) that there is no uniform method for producing a minimal pair of r.e. degrees below a given nonzero r.e. degree. It is not known whether every nonzero r.e. degree bounds a r.e. minimal pair, but in the present paper it is shown (uniformly) that every high r.e. degree bounds a r.e. minimal pair. (A r.e. degree is said to be high if it contains a high set in the sense of Robert W. Robinson [3].)Theorem. Let a be a recursively enumerable degree for which a′ = 0″. Then there are recursively enumerable degrees b0 and b1 such that0 < bi < a for each i ≤ 1, and b0 ⋂ b1 = 0.The proof is based on the Lachlan minimal r.e. pair construction. For notation see Lachlan [2] or S. B. Cooper [1].By Robinson [3] we can choose a r.e. representative A of the degree a, with uniformly recursive tower {As, ∣ s ≥ 0} of finite approximations to A, such that CA dominates every recursive function whereWe define, stage by stage, finite sets Bi,s, i ≤ 1, s ≥ 0, in such a way that Bi, s + 1 ⊇ Bi,s for each i, s, and {Bi,s ∣ i ≤ 1, s ≥ 0} is uniformly recursive.



Sign in / Sign up

Export Citation Format

Share Document