Note on the Inversion Theorem

Biometrika ◽  
1951 ◽  
Vol 38 (3/4) ◽  
pp. 481 ◽  
Author(s):  
J. Gil-Pelaez
Keyword(s):  
Author(s):  
Joel Feldman ◽  
Manfred Salmhofer ◽  
Eugene Trubowitz

2019 ◽  
Vol 27 (3) ◽  
pp. 177-194
Author(s):  
Bartłomiej Kluczyński

AbstractUsing a global inversion theorem we investigate properties of the following operator\matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr }in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution {x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right) to the associated integral equation\left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right.which is considered on a suitable Sobolev space.


2017 ◽  
pp. 140-153
Author(s):  
Chi Tat Chong ◽  
Lei Qian ◽  
Yue Yang

2000 ◽  
Vol 39 (6) ◽  
pp. 417-437 ◽  
Author(s):  
I.N. Soskov

Sign in / Sign up

Export Citation Format

Share Document