fourier inversion
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 5)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Éric Bonnetier ◽  
Angèle Niclas ◽  
Laurent Seppecher ◽  
Grégory Vial

<p style='text-indent:20px;'>Localization and reconstruction of small defects in acoustic or electromagnetic waveguides is of crucial interest in nondestructive evaluation of structures. The aim of this work is to present a new multi-frequency inversion method to reconstruct small defects in a 2D waveguide. Given one-side multi-frequency wave field measurements of propagating modes, we use a Born approximation to provide a <inline-formula><tex-math id="M1">\begin{document}$ \text{L}^2 $\end{document}</tex-math></inline-formula>-stable reconstruction of three types of defects: a local perturbation inside the waveguide, a bending of the waveguide, and a localized defect in the geometry of the waveguide. This method is based on a mode-by-mode spacial Fourier inversion from the available partial data in the Fourier domain. Indeed, in the available data, some high and low spatial frequency information on the defect are missing. We overcome this issue using both a compact support hypothesis and a minimal smoothness hypothesis on the defects. We also provide a suitable numerical method for efficient reconstruction of such defects and we discuss its applications and limits.</p>


Author(s):  
Michael Perlmutter ◽  
Sami Merhi ◽  
Aditya Viswanathan ◽  
Mark Iwen

Abstract We propose a two-step approach for reconstructing a signal $\textbf x\in \mathbb{C}^d$ from subsampled discrete short-time Fourier transform magnitude (spectogram) measurements: first, we use an aliased Wigner distribution deconvolution approach to solve for a portion of the rank-one matrix $\widehat{\textbf{x}}\widehat{\textbf{x}}^{*}.$ Secondly, we use angular synchronization to solve for $\widehat{\textbf{x}}$ (and then for $\textbf{x}$ by Fourier inversion). Using this method, we produce two new efficient phase retrieval algorithms that perform well numerically in comparison to standard approaches and also prove two theorems; one which guarantees the recovery of discrete, bandlimited signals $\textbf{x}\in \mathbb{C}^{d}$ from fewer than $d$ short-time Fourier transform magnitude measurements and another which establishes a new class of deterministic coded diffraction pattern measurements which are guaranteed to allow efficient and noise robust recovery.


2019 ◽  
Vol 12 (2) ◽  
pp. 69
Author(s):  
Dilip B. Madan ◽  
Wim Schoutens

It is argued that the growth in the breadth of option strikes traded after the financial crisis of 2008 poses difficulties for the use of Fourier inversion methodologies in volatility surface calibration. Continuous time Markov chain approximations are proposed as an alternative. They are shown to be adequate, competitive, and stable though slow for the moment. Further research can be devoted to speed enhancements. The Markov chain approximation is general and not constrained to processes with independent increments. Calibrations are illustrated for data on 2695 options across 28 maturities for S P Y as at 8 February 2018.


Author(s):  
Takehiro Hasegawa ◽  
Hayato Saigo ◽  
Seiken Saito ◽  
Shingo Sugiyama

The subject of the present paper is an application of quantum probability to [Formula: see text]-adic objects. We give a quantum-probabilistic interpretation of the spherical Hecke algebra for [Formula: see text], where [Formula: see text] is a [Formula: see text]-adic field. As a byproduct, we obtain a new proof of the Fourier inversion formula for [Formula: see text].


Filomat ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 2327-2334
Author(s):  
B.J. González ◽  
E.R. Negrín

Gaussian functions are useful in order to establish inversion formulae for the classical Fourier transform. In this paper we show that they also are helpful in order to obtain a Fourier inversion formula for the distributional case.


2017 ◽  
Vol 25 (2) ◽  
pp. 345-376
Author(s):  
Ying-Fen Lin ◽  
Jean Ludwig ◽  
Carine Molitor-Braun

Sign in / Sign up

Export Citation Format

Share Document