A Simple Geometric Proof of the Addition Formula for the Sine

1994 ◽  
Vol 25 (3) ◽  
pp. 229
Author(s):  
Jeffrey Li-chieh Ho
1994 ◽  
Vol 25 (3) ◽  
pp. 229-230
Author(s):  
Jeffrey Li-chieh Ho

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 984
Author(s):  
Pedro J. Miana ◽  
Natalia Romero

Generalized Laguerre polynomials, Ln(α), verify the well-known Rodrigues’ formula. Using Weyl and Riemann–Liouville fractional calculi, we present several fractional generalizations of Rodrigues’ formula for generalized Laguerre functions and polynomials. As a consequence, we give a new addition formula and an integral representation for these polynomials. Finally, we introduce a new family of fractional Lebesgue spaces and show that some of these special functions belong to them.


1992 ◽  
Vol 23 (3) ◽  
pp. 209
Author(s):  
John H. Mathews
Keyword(s):  

1993 ◽  
Vol 23 (3-4) ◽  
pp. 384-386 ◽  
Author(s):  
Stefan E. Schmidt
Keyword(s):  

2009 ◽  
Vol 47 (7) ◽  
pp. 442-443 ◽  
Author(s):  
John F. Devlin

1990 ◽  
Vol 63 (5) ◽  
pp. 336
Author(s):  
Roger B. Nelsen
Keyword(s):  

2019 ◽  
Vol 198 ◽  
pp. 52-73
Author(s):  
Yongchang Zhu

2016 ◽  
Vol 27 (07) ◽  
pp. 1640002 ◽  
Author(s):  
Insong Choe ◽  
George H. Hitching

Let [Formula: see text] be the Grassmann bundle of two-planes associated to a general bundle [Formula: see text] over a curve [Formula: see text]. We prove that an embedding of [Formula: see text] by a certain twist of the relative Plücker map is not secant defective. This yields a new and more geometric proof of the Hirschowitz-type bound on the isotropic Segre invariant for maximal isotropic sub-bundles of orthogonal bundles over [Formula: see text], analogous to those given for vector bundles and symplectic bundles in [I. Choe and G. H. Hitching, Secant varieties and Hirschowitz bound on vector bundles over a curve, Manuscripta Math. 133 (2010) 465–477, I. Choe and G. H. Hitching, Lagrangian sub-bundles of symplectic vector bundles over a curve, Math. Proc. Cambridge Phil. Soc. 153 (2012) 193–214]. From the non-defectivity, we also deduce an interesting feature of a general orthogonal bundle of even rank over [Formula: see text], contrasting with the classical and symplectic cases: a general maximal isotropic sub-bundle of maximal degree intersects at least one other such sub-bundle in positive rank.


Sign in / Sign up

Export Citation Format

Share Document