laguerre polynomials
Recently Published Documents


TOTAL DOCUMENTS

690
(FIVE YEARS 106)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alejandro Molano

Purpose In this paper, the authors take the first step in the study of constructive methods by using Sobolev polynomials.Design/methodology/approach To do that, the authors use the connection formulas between Sobolev polynomials and classical Laguerre polynomials, as well as the well-known Fourier coefficients for these latter.Findings Then, the authors compute explicit formulas for the Fourier coefficients of some families of Laguerre–Sobolev type orthogonal polynomials over a finite interval. The authors also describe an oscillatory region in each case as a reasonable choice for approximation purposes.Originality/value In order to take the first step in the study of constructive methods by using Sobolev polynomials, this paper deals with Fourier coefficients for certain families of polynomials orthogonal with respect to the Sobolev type inner product. As far as the authors know, this particular problem has not been addressed in the existing literature.


2021 ◽  
Vol 41 (1) ◽  
pp. 1-14
Author(s):  
Asma Akter Akhia ◽  
Goutam Saha

In this research, we have introduced Galerkin method for finding approximate solutions of Fredholm Volterra Integral Equation (FVIE) of 2nd kind, and this method shows the result in respect of the linear combinations of basis polynomials. Here, BF (product of Bernstein and Fibonacci polynomials), CH (product of Chebyshev and Hermite polynomials), CL (product of Chebyshev and Laguerre polynomials), FL (product of Fibonacci and Laguerre polynomials) and LLE (product of Legendre and Laguerre polynomials) polynomials are established and considered as basis function in Galerkin method. Also, we have tried to observe the behavior of all these approximate solutions finding from Galerkin method for different problems and then a comparison is shown using some standard error estimations. In addition, we observe the error graphs of numerical solutions in Galerkin method for different problems of FVIE of second kind. GANITJ. Bangladesh Math. Soc.41.1 (2021) 1–14


2021 ◽  
Vol 14 (4) ◽  
pp. 339-347

Abstract: In this work, we obtain the Schrödinger equation solutions for the Varshni potential using the Nikiforov-Uvarov method. The energy eigenvalues are obtained in non-relativistic regime. The corresponding eigenfunction is obtained in terms of Laguerre polynomials. We applied the present results to calculate heavy-meson masses of charmonium cc ¯ and bottomonium bb ¯. The mass spectra for charmonium and bottomonium multiplets have been predicted numerically. The results are in good agreement with experimental data and the works of other researchers. Keywords: Schrödinger equation, Varshni potential, Nikiforov-Uvarov method, Heavy meson. PACs: 14.20.Lq; 03.65.-w; 14.40.Pq; 11.80.Fv.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dmitry V. Dolgy ◽  
Dae San Kim ◽  
Hye Kyung Kim ◽  
Seong Ho Park

AbstractThe aim of this paper is to introduce the degenerate generalized Laguerre polynomials as the degenerate version of the generalized Laguerre polynomials and to derive some properties related to those polynomials and Lah numbers, including an explicit expression, a Rodrigues type formula, and expressions for the derivatives. The novelty of the present paper is that it is the first paper on degenerate versions of orthogonal polynomials.


Author(s):  
Mohammad Izadi ◽  
H. M. Srivastava

The main purpose of this article is to investigate a novel set of (orthogonal) basis functions for treating a class of multi-order fractional pantograph differential equations (MOFPDEs) computationally. These polynomials, denoted by S n ( x ) and called special polynomials , were first discovered in a study of a certain family of isotropic turbulence fields. They are expressible in terms of the generalized Laguerre polynomials and are related to the Bessel and Srivastava–Singhal polynomials. Unlike the Laguerre polynomials, all coefficients of the special polynomials are positive. We further introduce the fractional order of the special polynomials and use them along with some suitable collocation points in a special matrix technique to treat fractional-order MOFPDEs. Moreover, the convergence analysis of these polynomials is established. Through five example applications, the utility and efficiency of the present matrix approach are demonstrated and comparisons with some existing numerical schemes have been performed in this class.


Author(s):  
Chandrali Baishya ◽  
P. Veeresha

The Atangana–Baleanu derivative and the Laguerre polynomial are used in this analysis to define a new computational technique for solving fractional differential equations. To serve this purpose, we have derived the operational matrices of fractional integration and fractional integro-differentiation via Laguerre polynomials. Using the derived operational matrices and collocation points, we reduce the fractional differential equations to a system of linear or nonlinear algebraic equations. For the error of the operational matrix of the fractional integration, an error bound is derived. To illustrate the accuracy and the reliability of the projected algorithm, numerical simulation is presented, and the nature of attained results is captured in diverse order. Finally, the achieved consequences enlighten that the solutions obtained by the proposed scheme give better convergence to the actual solution than the results available in the literature.


Sign in / Sign up

Export Citation Format

Share Document