The total waiting time in a busy period of a stable single-server queue, II

1969 ◽  
Vol 6 (3) ◽  
pp. 565-572 ◽  
Author(s):  
D. J. Daley ◽  
D. R. Jacobs

This paper is a continuation of Daley (1969), referred to as (I), whose notation and numbering is continued here. We shall indicate various approaches to the study of the total waiting time in a busy period2 of a stable single-server queue with a Poisson arrival process at rate λ, and service times independently distributed with common distribution function (d.f.) B(·). Let X'i denote3 the total waiting time in a busy period which starts at an epoch when there are i (≧ 1) customers in the system (to be precise, the service of one customer is just starting and the remaining i − 1 customers are waiting for service). We shall find the first two moments of X'i, prove its asymptotic normality for i → ∞ when B(·) has finite second moment, and exhibit the Laplace-Stieltjes transform of X'i in M/M/1 as the ratio of two Bessel functions.

1969 ◽  
Vol 6 (03) ◽  
pp. 565-572 ◽  
Author(s):  
D. J. Daley ◽  
D. R. Jacobs

This paper is a continuation of Daley (1969), referred to as (I), whose notation and numbering is continued here. We shall indicate various approaches to the study of the total waiting time in a busy period2 of a stable single-server queue with a Poisson arrival process at rate λ, and service times independently distributed with common distribution function (d.f.) B(·). Let X'i denote3 the total waiting time in a busy period which starts at an epoch when there are i (≧ 1) customers in the system (to be precise, the service of one customer is just starting and the remaining i − 1 customers are waiting for service). We shall find the first two moments of X'i, prove its asymptotic normality for i → ∞ when B(·) has finite second moment, and exhibit the Laplace-Stieltjes transform of X'i in M/M/1 as the ratio of two Bessel functions.


Author(s):  
F. P. Kelly

Consider a single-server queueing system with a Poisson arrival process at rate λ and positive service requirements independently distributed with common distribution function B(z) and finite expectationwhere βλ < 1, i.e. an M/G/1 system. When the queue discipline is first come first served, or last come first served without pre-emption, the stationary departure process is Poisson if and only if G = M (i.e. B(z) = 1 − exp (−z/β)); see (8), (4) and (2). In this paper it is shown that when the queue discipline is last come first served with pre-emption the stationary departure process is Poisson whatever the form of B(z). The method used is adapted from the approach of Takács (10) and Shanbhag and Tambouratzis (9).


1969 ◽  
Vol 6 (03) ◽  
pp. 550-564 ◽  
Author(s):  
D. J. Daley

A quantity of particular interest in the study of (road) traffic jams is the total waiting time X of all vehicles involved in a given hold-up (Gaver (1969): see note following (2.3) below and the first paragraph of Section 5). With certain assumptions on the process this random variable X is the same as the sum of waiting times of customers in a busy period of a GI/G/1 queueing system, and it is the object of this paper and its sequel to study the random variable in the queueing theory context.


1969 ◽  
Vol 6 (3) ◽  
pp. 550-564 ◽  
Author(s):  
D. J. Daley

A quantity of particular interest in the study of (road) traffic jams is the total waiting time X of all vehicles involved in a given hold-up (Gaver (1969): see note following (2.3) below and the first paragraph of Section 5). With certain assumptions on the process this random variable X is the same as the sum of waiting times of customers in a busy period of a GI/G/1 queueing system, and it is the object of this paper and its sequel to study the random variable in the queueing theory context.


1974 ◽  
Vol 11 (04) ◽  
pp. 825-828 ◽  
Author(s):  
D. C. McNickle

In this note an identity due to Arjas (1972) is used to express the distribution of the number of departures from a single server queue in which both service and interarrival times may depend on customer type in terms of the busy period and busy cycle processes.


1971 ◽  
Vol 8 (4) ◽  
pp. 835-837 ◽  
Author(s):  
İzzet Şahin

In [4], the limiting behaviour of a stochastic system with two types of input was investigated by reducing the problem to the solution of an integral equation. In this note we use the same approach to study the equilibrium waiting time problem for the general single server queue with preemptive service interruptions. (For a comprehensive account of the existing literature on queues with service interruptions we refer to [2] and [3].)


Sign in / Sign up

Export Citation Format

Share Document