Waitingtimes between record observations

1967 ◽  
Vol 4 (1) ◽  
pp. 206-208 ◽  
Author(s):  
Marcel F. Neuts

If Δr denotes the waitingtime between the (r − 1)st and the rth upper record in a sequence of independent, identically distributed random variables with a continuous distribution, then it is shown that Δr satisfies the weak law of large numbers and a central limit theorem.This theorem supplements those of Foster and Stuart and Rényi, who investigated the index Vr of the rth upper record.Qualitatively the theorems establish the intuitive fact that for higher records, the waitingtime between the last two records outweighs even the total waitingtime for previous records. This explains also why the asymptotic normality of logVr is very inadequate for approximation purposes—Barton and Mallows.

1967 ◽  
Vol 4 (01) ◽  
pp. 206-208 ◽  
Author(s):  
Marcel F. Neuts

If Δ r denotes the waitingtime between the (r − 1)st and the rth upper record in a sequence of independent, identically distributed random variables with a continuous distribution, then it is shown that Δ r satisfies the weak law of large numbers and a central limit theorem. This theorem supplements those of Foster and Stuart and Rényi, who investigated the index Vr of the rth upper record. Qualitatively the theorems establish the intuitive fact that for higher records, the waitingtime between the last two records outweighs even the total waitingtime for previous records. This explains also why the asymptotic normality of logVr is very inadequate for approximation purposes—Barton and Mallows.


Author(s):  
G. K. Eagleson ◽  
N. C. Weber

An array of random variables, indexed by a multidimensional parameter set, is said to be dissociated if the random variables are independent whenever their indexing sets are disjoint. The idea of dissociated random variables, which arises rather naturally in data analysis, was first studied by McGinley and Sibson(7). They proved a Strong Law of Large Numbers for dissociated random variables when their fourth moments are uniformly bounded. Silver man (8) extended the analysis of dissociated random variables by proving a Central Limit Theorem when the variables also satisfy certain symmetry relations. It is the aim of this paper to show that a Strong Law of Large Numbers (under more natural moment conditions), a Central Limit Theorem and in variance principle are consequences of the symmetry relations imposed by Silverman rather than the independence structure. To prove these results, reversed martingale techniques are employed and thus it is shown, in passing, how the well known Central Limit Theorem for U-statistics can be derived from the corresponding theorem for reversed martingales (as was conjectured by Loynes(6)).


2021 ◽  
Vol 499 (1) ◽  
pp. 124982
Author(s):  
Benjamin Avanzi ◽  
Guillaume Boglioni Beaulieu ◽  
Pierre Lafaye de Micheaux ◽  
Frédéric Ouimet ◽  
Bernard Wong

2018 ◽  
Vol 50 (A) ◽  
pp. 177-190
Author(s):  
Götz Kersting ◽  
Anton Wakolbinger

Abstract We present a law of large numbers and a central limit theorem for the time to absorption of Λ-coalescents with dust started from n blocks, as n→∞. The proofs rely on an approximation of the logarithm of the block-counting process by means of a drifted subordinator.


1994 ◽  
Vol 26 (04) ◽  
pp. 855-875 ◽  
Author(s):  
Irene Hueter

Consider the convex hull of n independent, identically distributed points in the plane. Functionals of interest are the number of vertices Nn , the perimeter Ln and the area An of the convex hull. We study the asymptotic behaviour of these three quantities when the points are standard normally distributed. In particular, we derive the variances of Nn, Ln and An for large n and prove a central limit theorem for each of these random variables. We enlarge on a method developed by Groeneboom (1988) for uniformly distributed points supported on a bounded planar region. The process of vertices of the convex hull is of central importance. Poisson approximation and martingale techniques are used.


1973 ◽  
Vol 10 (4) ◽  
pp. 837-846 ◽  
Author(s):  
P. A. P. Moran

A central limit theorem is proved for the sum of random variables Xr all having the same form of distribution and each of which depends on a parameter which is the number occurring in the rth cell of a multinomial distribution with equal probabilities in N cells and a total n, where nN–1 tends to a non-zero constant. This result is used to prove the asymptotic normality of the distribution of the fractional volume of a large cube which is not covered by N interpenetrating spheres whose centres are at random, and for which NV–1 tends to a non-zero constant. The same theorem can be used to prove asymptotic normality for a large number of occupancy problems.


Sign in / Sign up

Export Citation Format

Share Document