On estimation of parameters of Gaussian stationary processes

1979 ◽  
Vol 16 (3) ◽  
pp. 575-591 ◽  
Author(s):  
Masanobu Taniguchi

In fitting a certain parametric family of spectral densities fθ (x) to a Gaussian stationary process with the true spectral density g (x), we propose two estimators of θ, say by minimizing two criteria D1 (·), D2(·) respectively, which measure the nearness of fθ (x) to g (x). Then we investigate some asymptotic behavior of with respect to efficiency and robustness.

1979 ◽  
Vol 16 (03) ◽  
pp. 575-591 ◽  
Author(s):  
Masanobu Taniguchi

In fitting a certain parametric family of spectral densities fθ (x) to a Gaussian stationary process with the true spectral density g (x), we propose two estimators of θ, say by minimizing two criteria D 1 (·), D 2(·) respectively, which measure the nearness of fθ (x) to g (x). Then we investigate some asymptotic behavior of with respect to efficiency and robustness.


1968 ◽  
Vol 20 ◽  
pp. 1203-1206 ◽  
Author(s):  
K. Nagabhushanam ◽  
C. S. K. Bhagavan

In 1964, L. J. Herbst (3) introduced the generalized spectral density Function1for a non-stationary process {X(t)} denned by1where {η(t)} is a real Gaussian stationary process of discrete parameter and independent variates, the (a;)'s and (σj)'s being constants, the latter, which are ordered in time, having their moduli less than a positive number M.


1980 ◽  
Vol 17 (01) ◽  
pp. 73-83 ◽  
Author(s):  
Masanobu Taniguchi

Let g(x) be the spectral density of a Gaussian stationary process. Then, for each continuous function ψ (x) we shall give an estimator of whose asymptotic variance is O(n –1), where Φ(·) is an appropriate known function. Also we shall investigate the asymptotic properties of its estimator.


1980 ◽  
Vol 17 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Masanobu Taniguchi

Let g(x) be the spectral density of a Gaussian stationary process. Then, for each continuous function ψ (x) we shall give an estimator of whose asymptotic variance is O(n–1), where Φ(·) is an appropriate known function. Also we shall investigate the asymptotic properties of its estimator.


1970 ◽  
Vol 38 ◽  
pp. 103-111 ◽  
Author(s):  
Izumi Kubo

We shall discuss the sample path continuity of a stationary process assuming that the spectral distribution function F(λ) is given. Many kinds of sufficient conditions have been given in terms of the covariance function or the asymptotic behavior of the spectral distribution function.


1982 ◽  
Vol 19 (A) ◽  
pp. 333-343
Author(s):  
A. M. Hasofer

Over a finite interval, a Gaussian stationary process can be approximated by a finite trigonometric sum, and the error introduced by the approximation can be exactly bounded, as far as the distribution of the upper tail of the maximum is concerned. A simple case is exhibited, where a narrow band process is well approximated by means of a two-term trigonometric representation.


1967 ◽  
Vol 4 (03) ◽  
pp. 508-528 ◽  
Author(s):  
Richard A. Olshen

Suppose x 1,…, xN are indefinitely many observations on a stochastic process which is weakly stationary with spectral density f(λ), – π ≦ λ ≦ π. An asymptotically unbiased, and to that extent plausible, estimate of 4rf(λ)is the periodogram Yet the periodograms of processes which possess spectral densities are notoriously subject to erratic behavior.


1982 ◽  
Vol 19 (A) ◽  
pp. 333-343 ◽  
Author(s):  
A. M. Hasofer

Over a finite interval, a Gaussian stationary process can be approximated by a finite trigonometric sum, and the error introduced by the approximation can be exactly bounded, as far as the distribution of the upper tail of the maximum is concerned. A simple case is exhibited, where a narrow band process is well approximated by means of a two-term trigonometric representation.


Sign in / Sign up

Export Citation Format

Share Document