The discrete-time single-server queue with time-inhomogeneous compound Poisson input and general service time distribution

1978 ◽  
Vol 15 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Do Le Minh

This paper studies a discrete-time, single-server queueing model having a compound Poisson input with time-dependent parameters and a general service time distribution.All major transient characteristics of the system can be calculated very easily. For the queueing model with periodic arrival function, some explicit results are obtained.

1978 ◽  
Vol 15 (03) ◽  
pp. 590-601 ◽  
Author(s):  
Do Le Minh

This paper studies a discrete-time, single-server queueing model having a compound Poisson input with time-dependent parameters and a general service time distribution. All major transient characteristics of the system can be calculated very easily. For the queueing model with periodic arrival function, some explicit results are obtained.


1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


2003 ◽  
Vol 40 (01) ◽  
pp. 200-225 ◽  
Author(s):  
A. A. Borovkov ◽  
O. J. Boxma ◽  
Z. Palmowski

This paper is devoted to a study of the integral of the workload process of the single server queue, in particular during one busy period. Firstly, we find asymptotics of the area 𝒜 swept under the workload process W(t) during the busy period when the service time distribution has a regularly varying tail. We also investigate the case of a light-tailed service time distribution. Secondly, we consider the problem of obtaining an explicit expression for the distribution of 𝒜. In the general GI/G/1 case, we use a sequential approximation to find the Laplace—Stieltjes transform of 𝒜. In the M/M/1 case, this transform is obtained explicitly in terms of Whittaker functions. Thirdly, we consider moments of 𝒜 in the GI/G/1 queue. Finally, we show asymptotic normality of .


1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


2003 ◽  
Vol 40 (1) ◽  
pp. 200-225 ◽  
Author(s):  
A. A. Borovkov ◽  
O. J. Boxma ◽  
Z. Palmowski

This paper is devoted to a study of the integral of the workload process of the single server queue, in particular during one busy period. Firstly, we find asymptotics of the area 𝒜 swept under the workload process W(t) during the busy period when the service time distribution has a regularly varying tail. We also investigate the case of a light-tailed service time distribution. Secondly, we consider the problem of obtaining an explicit expression for the distribution of 𝒜. In the general GI/G/1 case, we use a sequential approximation to find the Laplace—Stieltjes transform of 𝒜. In the M/M/1 case, this transform is obtained explicitly in terms of Whittaker functions. Thirdly, we consider moments of 𝒜 in the GI/G/1 queue. Finally, we show asymptotic normality of .


1964 ◽  
Vol 1 (2) ◽  
pp. 369-384 ◽  
Author(s):  
A. M. Hasofer

In this paper, a single-server queue with non-homogeneous Poisson input and general service time is considered. Particular attention is given to the case where the parameter of the Poisson input λ(t) is a periodic function of the time. The approach is an extension of the work of Takács and Reich . The main result of the investigation is that under certain conditions on the distribution of the service time, the form of the function λ(t) and the distribution of the waiting time at t = 0, the probability of a server being idle P0 and the Laplace transform Ω of the waiting time are both asymptotically periodic in t. Putting where b(t) is a periodic function of time, it is shown that both Po and Ω can be expanded in a power series in z, and a method for calculating explicitly the asymptotic values of the leading terms is obtained.In many practical queueing problems, it is expected that the probability of arrivals will vary periodically. For example, in restaurants or at servicestations arrivals are more probable at rush hours than at slack periods, and rush hours are repeated day after day


1965 ◽  
Vol 2 (02) ◽  
pp. 462-466
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


1964 ◽  
Vol 1 (02) ◽  
pp. 369-384 ◽  
Author(s):  
A. M. Hasofer

In this paper, a single-server queue with non-homogeneous Poisson input and general service time is considered. Particular attention is given to the case where the parameter of the Poisson input λ(t) is a periodic function of the time. The approach is an extension of the work of Takács and Reich . The main result of the investigation is that under certain conditions on the distribution of the service time, the form of the function λ(t) and the distribution of the waiting time at t = 0, the probability of a server being idle P 0 and the Laplace transform Ω of the waiting time are both asymptotically periodic in t. Putting where b(t) is a periodic function of time, it is shown that both P o and Ω can be expanded in a power series in z, and a method for calculating explicitly the asymptotic values of the leading terms is obtained. In many practical queueing problems, it is expected that the probability of arrivals will vary periodically. For example, in restaurants or at servicestations arrivals are more probable at rush hours than at slack periods, and rush hours are repeated day after day


Sign in / Sign up

Export Citation Format

Share Document