Weak moment conditions for time coordinates in first-passage percolation models

1980 ◽  
Vol 17 (4) ◽  
pp. 968-978 ◽  
Author(s):  
John C. Wierman

A generalization of first-passage percolation theory proves that the fundamental convergence theorems hold provided only that the time coordinate distribution has a finite moment of a positive order. The existence of a time constant is proved by considering first-passage times between intervals of sites, rather than the usual point-to-point and point-to-line first-passage times. The basic limit theorems for the related stochastic processes follow easily by previous techniques. The time constant is evaluated as 0 when the atom at 0 of the time-coordinate distribution exceeds½.

1980 ◽  
Vol 17 (04) ◽  
pp. 968-978 ◽  
Author(s):  
John C. Wierman

A generalization of first-passage percolation theory proves that the fundamental convergence theorems hold provided only that the time coordinate distribution has a finite moment of a positive order. The existence of a time constant is proved by considering first-passage times between intervals of sites, rather than the usual point-to-point and point-to-line first-passage times. The basic limit theorems for the related stochastic processes follow easily by previous techniques. The time constant is evaluated as 0 when the atom at 0 of the time-coordinate distribution exceeds½.


1979 ◽  
Vol 16 (4) ◽  
pp. 750-763 ◽  
Author(s):  
Wolfgang Reh

Most research in first-passage percolation has been done under the assumption of a finite mean for the underlying time coordinate distribution. We demonstrate that the basic ergodic results can be derived under a weaker moment assumption, which still permits us to evaluate the time constant in the case where the atom at zero of the time coordinate distribution exceeds one-half. Further almost sure convergence is investigated more closely.


1979 ◽  
Vol 16 (04) ◽  
pp. 750-763 ◽  
Author(s):  
Wolfgang Reh

Most research in first-passage percolation has been done under the assumption of a finite mean for the underlying time coordinate distribution. We demonstrate that the basic ergodic results can be derived under a weaker moment assumption, which still permits us to evaluate the time constant in the case where the atom at zero of the time coordinate distribution exceeds one-half. Further almost sure convergence is investigated more closely.


1977 ◽  
Vol 9 (2) ◽  
pp. 283-295 ◽  
Author(s):  
John C. Wierman

Several problems are considered in the theory of first-passage percolation on the two-dimensional integer lattice. The results include: (i) necessary and sufficient conditions for the existence of moments of first-passage times; (ii) determination of an upper bound for the time constant; (iii) an initial result concerning the maximum height of routes for first-passage times; (iv) ergodic theorems for a class of reach processes.


1997 ◽  
Vol 29 (3) ◽  
pp. 713-732 ◽  
Author(s):  
Shiowjen Lee ◽  
J. Lynch

It is shown that totally positive order 2 (TP2) properties of the infinitesimal generator of a continuous-time Markov chain with totally ordered state space carry over to the chain's transition distribution function. For chains with such properties, failure rate characteristics of the first passage times are established. For Markov chains with partially ordered state space, it is shown that the first passage times have an IFR distribution under a multivariate total positivity condition on the transition function.


2019 ◽  
Vol 56 (2) ◽  
pp. 458-471
Author(s):  
Lasse Leskelä ◽  
Hoa Ngo

AbstractA large and sparse random graph with independent exponentially distributed link weights can be used to model the propagation of messages or diseases in a network with an unknown connectivity structure. In this article we study an extended setting where, in addition, the nodes of the graph are equipped with nonnegative random weights which are used to model the effect of boundary delays across paths in the network. Our main results provide approximative formulas for typical first passage times, typical flooding times, and maximum flooding times in the extended setting, over a time scale logarithmic with respect to the network size.


1998 ◽  
Vol 7 (1) ◽  
pp. 11-15 ◽  
Author(s):  
SVEN ERICK ALM

Consider first-passage percolation on the square lattice. Welsh, who together with Hammersley introduced the subject in 1963, has formulated a problem about mean first-passage times, which, although seemingly simple, has not been proved in any non-trivial case. In this paper we give a general proof of Welsh's problem.


1977 ◽  
Vol 9 (02) ◽  
pp. 283-295 ◽  
Author(s):  
John C. Wierman

Several problems are considered in the theory of first-passage percolation on the two-dimensional integer lattice. The results include: (i) necessary and sufficient conditions for the existence of moments of first-passage times; (ii) determination of an upper bound for the time constant; (iii) an initial result concerning the maximum height of routes for first-passage times; (iv) ergodic theorems for a class of reach processes.


1997 ◽  
Vol 29 (03) ◽  
pp. 713-732 ◽  
Author(s):  
Shiowjen Lee ◽  
J. Lynch

It is shown that totally positive order 2 (TP2) properties of the infinitesimal generator of a continuous-time Markov chain with totally ordered state space carry over to the chain's transition distribution function. For chains with such properties, failure rate characteristics of the first passage times are established. For Markov chains with partially ordered state space, it is shown that the first passage times have an IFR distribution under a multivariate total positivity condition on the transition function.


Sign in / Sign up

Export Citation Format

Share Document