scholarly journals Design of LDPC Codes: A Survey and New Results

2017 ◽  
Vol 2 (3) ◽  
pp. 191 ◽  
Author(s):  
Gianluigi Liva ◽  
Shumei Song ◽  
Lan Lan ◽  
Yifei Zhang ◽  
Shu Lin ◽  
...  

This survey paper provides fundamentals in the design of LDPC codes. To provide a target for the code designer, we first summarize the EXIT chart technique for determining(near-)optimal degree distributions for LDPC code ensembles. We also demonstrate the simplicity of representing codes by protographs and how this naturally leads to quasi-cyclic LDPC codes. The EXIT chart technique is then extended to the special case of protograph-based LDPC codes. Next, we present several design approaches for LDPC codes which incorporate one or more accumulators, including quasi-cyclic accumulatorbased codes. The second half the paper then surveys severalalgebraic LDPC code design techniques. First, codes based on finite geometries are discussed and then codes whose designs are based on Reed-Solomon codes are covered. The algebraic designs lead to cyclic, quasi-cyclic, and structured codes. The masking technique for converting regular quasi-cyclic LDPC codes to irregular codes is also presented. Some of these results and codes have not been presented elsewhere. The paper focuses on the binary-input AWGN channel (BI-AWGNC). However, as discussed in the paper, good BI-AWGNC codes tend to be universally good across many channels. Alternatively, the reader may treat this paper as a starting point for extensions to more advanced channels. The paper concludes with a brief discussion of open problems.

2021 ◽  
Author(s):  
Shyam Saurabh

<p>Structured LDPC codes have been constructed using balanced incomplete block (BIB) designs, resolvable BIB designs, mutually orthogonal Latin rectangles, partial geometries, group divisible designs, resolvable group divisible designs and finite geometries. Here we have constructed LDPC codes from <i>α </i>–<b> </b>resolvable BIB and Group divisible designs. The sub–matrices of incidence matrix of such block design are used as a parity – check matrix of the code which satisfy row – column constraint. Here the girth of the proposed code is at least six and the corresponding LDPC code (or Tanner graph) is free of 4– cycles. </p>


2017 ◽  
Vol 21 (3) ◽  
pp. 464-467 ◽  
Author(s):  
Bin Dai ◽  
Rongke Liu ◽  
Yi Hou ◽  
Ling Zhao ◽  
Zhen Mei

Author(s):  
Thuy Van Nguyen ◽  
Hung Ngoc Dang

Recently, two emerging research topics are protograph low-density parity-check (P-LDPC) and large-scale multi-input multi-output (LS-MIMO) with low-resolution analog-to-digital (ADC) converters (LS-MIMO-LOW-ADC). In these directions, many research works have proposed 1-bit ADC as a good candidate for LS-MIMO systems in order to save both transmission power and circuit energy dissipation. However, we observed that previously reported P-LDPC codes might not have good performance for LS-MIMO systems with 1-bit ADC. Hence, we perform a re-design of the P-LDPC codes for the above systems in this paper. The new codes demonstrate a good coding gain from 0:3 dB at rate 1/2 to 0:5 dB at rate 2/3 in different LS-MIMO configurations with 1-bit ADC.


2021 ◽  
Author(s):  
Shyam Saurabh

<p>Structured LDPC codes have been constructed using balanced incomplete block (BIB) designs, resolvable BIB designs, mutually orthogonal Latin rectangles, partial geometries, group divisible designs, resolvable group divisible designs and finite geometries. Here we have constructed LDPC codes from <i>α </i>–<b> </b>resolvable BIB and Group divisible designs. The sub–matrices of incidence matrix of such block design are used as a parity – check matrix of the code which satisfy row – column constraint. Here the girth of the proposed code is at least six and the corresponding LDPC code (or Tanner graph) is free of 4– cycles. </p>


2013 ◽  
Vol 49 (6) ◽  
pp. 2823-2826 ◽  
Author(s):  
Lingjun Kong ◽  
Yong Liang Guan ◽  
Jianping Zheng ◽  
Guojun Han ◽  
Kui Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document