parity check
Recently Published Documents


TOTAL DOCUMENTS

1823
(FIVE YEARS 243)

H-INDEX

62
(FIVE YEARS 4)

F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 7
Author(s):  
Chinnaiyan Senthilpari ◽  
Rosalind Deena ◽  
Lee Lini

Background: Low-density parity-check (LDPC) codes are more error-resistant than other forward error-correcting codes. Existing circuits give high power dissipation, less speed, and more occupying area. This work aimed to propose a better design and performance circuit, even in the presence of noise in the channel. Methods: In this research, the design of the multiplexer and demultiplexer were achieved using pass transistor logic. The target parameters were low power dissipation, improved throughput, and more negligible delay with a minimum area. One of the essential connecting circuits in a decoShder architecture is a multiplexer (MUX) and a demultiplexer (DEMUX) circuit. The design of the MUX and DEMUX contributes significantly to the performance of the decoder. The aim of this paper was the design of a 4 × 1 MUX to route the data bits received from the bit update blocks to the parallel adder circuits and a 1 × 4 DEMUX to receive the input bits from the parallel adder and distribute the output to the bit update blocks in a layered architecture LDPC decoder. The design uses pass transistor logic and achieves the reduction of the number of transistors used. The proposed circuit was designed using the Mentor Graphics CAD tool for 180 nm technology. Results: The parameters of power dissipation, area, and delay were considered crucial parameters for a low power decoder. The circuits were simulated using computer-aided design (CAD) tools, and the results depicted a significantly low power dissipation of 7.06 nW and 5.16 nW for the multiplexer and demultiplexer, respectively. The delay was found to be 100.5 ns (MUX) and 80 ns (DEMUX). Conclusion: This decoder’s potential use may be in low-power communication circuits such as handheld devices and Internet of Things (IoT) circuits.


Author(s):  
Fatima Zahrae Zenkouar ◽  
Mustapha El Alaoui ◽  
Said Najah

In this paper, we have developed several concepts such as the tree concept, the short cycle concept and the group shuffling concept of a propagation cycle to decrypt low-density parity-check (LDPC) codes. Thus, we proposed an algorithm based on group shuffling propagation where the probability of occurrence takes exponential form exponential factor appearance probability belief propagation-group shuffled belief propagation (EFAP-GSBP). This algorithm is used for wireless communication applications by providing improved decryption performance with low latency. To demonstrate the effectiveness of our suggested technique EFAP-GSBP, we ran numerous simulations that demonstrated that our algorithm is superior to the traditional BP/GSBP algorithm for decrypting LPDC codes in both regular and non-regular forms


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3055
Author(s):  
Yu Qiu ◽  
Chao Liu ◽  
Jianrong Bao ◽  
Bin Jiang ◽  
Yanhai Shang

An efficient iterative timing recovery via steepest descent of low-density parity-check (LDPC) decoding metrics is presented. In the proposed algorithm, a more accurate symbol timing synchronization is achieved at a low signal-to-noise (SNR) without any pilot symbol by maximizing the sum of the square of all soft metrics in LDPC decoding. The principle of the above-proposed algorithm is analyzed theoretically with the evolution trend of the probability mean of the soft LDPC decoding metrics by the Gaussian approximation. In addition, an efficiently approximate gradient descent algorithm is adopted to obtain excellent timing recovery with rather low complexity and global convergence. Finally, a complete timing recovery is accomplished where the proposed scheme performs fine timing capture, followed by a traditional Mueller–Müller (M&M) timing recovery, which acquires timing track. Using the proposed iterative timing recovery method, the simulation results indicate that the performance of the LDPC coded binary phase shift keying (BPSK) scheme with rather large timing errors is just within 0.1 dB of the ideal code performance at the cost of some rational computation and storage. Therefore, the proposed iterative timing recovery can be efficiently applied on occasions of the weak signal timing synchronization in satellite communications and so on.


Author(s):  
Ricard Abelló ◽  
Marco Baldi ◽  
Filipe Carvalho ◽  
Franco Chiaraluce ◽  
Ricardo Fernandes ◽  
...  

AbstractThe Consultative Committee for Space Data Systems, followed by all national and international space agencies, has updated the Telecommand Coding and Synchronization sublayer to introduce new powerful low-density parity-check (LDPC) codes. Their large coding gains significantly improve the system performance and allow new Telecommand services and profiles with higher bit rates and volumes. In this paper, we focus on the Telecommand transmitter implementation in the Ground Station baseband segment. First, we discuss the most important blocks and we focus on the most critical one, i.e., the LDPC encoder. We present and analyze two techniques, one based on a Shift Register Adder Accumulator and the other on Winograd convolution both exploiting the block circulant nature of the LDPC matrix. We show that these techniques provide a significant complexity reduction with respect to the usual encoder mapping, thus allowing to obtain high uplink bit rates. We then discuss the choice of a proper hardware or software platform, and we show that a Central Processing Unit-based software solution is able to achieve the high bit rates requested by the new Telecommand applications. Finally, we present the results of a set of tests on the real-time software implementation of the new system, comparing the performance achievable with the different encoding options.


Author(s):  
Mouhcine Razi ◽  
Mhammed Benhayoun ◽  
Anass Mansouri ◽  
Ali Ahaitouf

<span lang="EN-US">For low density parity check (LDPC) decoding, hard-decision algorithms are sometimes more suitable than the soft-decision ones. Particularly in the high throughput and high speed applications. However, there exists a considerable gap in performances between these two classes of algorithms in favor of soft-decision algorithms.  In order to reduce this gap, in this work we introduce two new improved versions of the hard-decision algorithms, the adaptative gradient descent bit-flipping (AGDBF) and adaptative reliability ratio weighted GDBF (ARRWGDBF).  An adaptative weighting and correction factor is introduced in each case to improve the performances of the two algorithms allowing an important gain of bit error rate. As a second contribution of this work a real time implementation of the proposed solutions on a digital signal processors (DSP) is performed in order to optimize and improve the performance of these new approchs. The results of numerical simulations and DSP implementation reveal a faster convergence with a low processing time and a reduction in consumed memory resources when compared to soft-decision algorithms. For the irregular LDPC code, our approachs achieves gains of 0.25 and 0.15 dB respectively for the AGDBF and ARRWGDBF algorithms.</span>


2021 ◽  
pp. FOCS20-38-FOCS20-73
Author(s):  
Jonathan Mosheiff ◽  
Nicolas Resch ◽  
Noga Ron-Zewi ◽  
Shashwat Silas ◽  
Mary Wootters

Sign in / Sign up

Export Citation Format

Share Document