Design and wind tunnel test of a high performance low Reynolds number airfoil

Author(s):  
R. EVANGELISTA ◽  
W. PFENNINGER ◽  
S. MANGALAM ◽  
A. BAR-SEVER
Author(s):  
Masayuki Anyoji ◽  
Kei Nose ◽  
Shingo Ida ◽  
Daiju Numata ◽  
Hiroki Nagai ◽  
...  

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Christopher R. Marks ◽  
Rolf Sondergaard ◽  
Mitch Wolff ◽  
Rich Anthony

This paper presents experimental work comparing several Dielectric Barrier Discharge (DBD) plasma actuator configurations for low Reynolds number separation control. Actuators studied here are being investigated for use in a closed loop separation control system. The plasma actuators were fabricated in the U.S. Air Force Research Laboratory Propulsion Directorate’s thin film laboratory and applied to a low Reynolds number airfoil that exhibits similar suction surface behavior to those observed on Low Pressure (LP) Turbine blades. In addition to typical asymmetric arrangements producing downstream jets, one electrode configurations was designed to produce an array of off axis jets, and one produced a spanwise array of linear vertical jets in order to generate vorticity and improved boundary layer to freestream mixing. The actuators were installed on an airfoil and their performance compared by flow visualization, surface stress sensitive film (S3F), and drag measurements. The experimental data provides a clear picture of the potential utility of each design. Experiments were carried out at four Reynolds numbers, 1.4 × 105, 1.0 × 105, 6.0 × 104, and 5.0 × 104 at a-1.5 deg angle of attack. Data was taken at the AFRL Propulsion Directorate’s Low Speed Wind Tunnel (LSWT) facility.


Sign in / Sign up

Export Citation Format

Share Document