Segond Fracture: Lateral Capsular Ligament Avulsion

1997 ◽  
Vol 25 (2) ◽  
pp. 103-106 ◽  
Author(s):  
D. Scott Davis ◽  
William R. Post
Radiology ◽  
1986 ◽  
Vol 159 (2) ◽  
pp. 467-469 ◽  
Author(s):  
G W Dietz ◽  
D M Wilcox ◽  
J B Montgomery

2019 ◽  
Vol 7 (1) ◽  
pp. 232596711881806 ◽  
Author(s):  
Philippe Landreau ◽  
Antoine Catteeuw ◽  
Fawaz Hamie ◽  
Adnan Saithna ◽  
Bertrand Sonnery-Cottet ◽  
...  

Background: The capsulo-osseous layer (COL), short lateral ligament, mid–third lateral capsular ligament, lateral capsular ligament, and anterolateral ligament (ALL) are terms that have been used interchangeably to describe what is probably the same structure. This has resulted in confusion regarding the anatomy and function of the anterolateral complex of the knee and its relation to the distal iliotibial band (ITB). Purpose: To characterize the macroscopic anatomy of the anterolateral complex of the knee, in particular the femoral condylar attachment of the distal ITB. We identified a specific and consistent anatomic structure that has not been accurately described previously; it connects the deep surface of the ITB to the condylar area and is distinct from the ALL, COL, and Kaplan fibers. Study Design: Descriptive laboratory study. Methods: Sixteen fresh-frozen human cadaveric knees were used to study the anterolateral complex of the knee. Standardized dissections were performed that included qualitative and quantitative assessments of the anatomy through both anterior (n = 5) and posterior (n = 11) approaches. Results: The femoral condylar attachment of the distal ITB was not reliably identified by anterior dissection but was in all posterior dissections. A distinct anatomic structure, hereafter termed the “condylar strap” (CS), was identified between the femur and the lateral gastrocnemius on one side and the deep surface of the ITB on the other, in all posteriorly dissected specimens. The structure had a mean thickness of 0.88 mm, and its femoral insertion was located between the distal Kaplan fibers and the epicondyle. The proximal femoral attachment of the structure had a mean width of 15.82 mm, and the width of the distal insertion of the structure on the ITB was 13.27 mm. The mean length of the structure was 26.33 mm on its distal border and 21.88 mm on its proximal border. The qualitative evaluation of behavior in internal rotation revealed that this anatomic structure became tensioned and created a tenodesis effect on the ITB. Conclusion: There is a consistent structure that attaches to the deep ITB and the femoral epicondylar area. The orientation of fibers suggests that it may have a role in anterolateral knee stability. Clinical Relevance: This new anatomic description may help surgeons to optimize technical aspects of lateral extra-articular procedures in cases of anterolateral knee laxity.


2014 ◽  
Vol 23 (11) ◽  
pp. 3186-3195 ◽  
Author(s):  
Scott Caterine ◽  
Robert Litchfield ◽  
Marjorie Johnson ◽  
Blaine Chronik ◽  
Alan Getgood

2018 ◽  
Vol 15 (148) ◽  
pp. 20180550
Author(s):  
Vahhab Zarei ◽  
Rohit Y. Dhume ◽  
Arin M. Ellingson ◽  
Victor H. Barocas

Due to its high level of innervation, the lumbar facet capsular ligament (FCL) is suspected to play a role in low back pain (LBP). The nociceptors in the lumbar FCL may experience excessive deformation and generate pain signals. As such, understanding the mechanical behaviour of the FCL, as well as that of its underlying nerves, is critical if one hopes to understand its role in LBP. In this work, we constructed a multiscale structure-based finite-element (FE) model of a lumbar FCL on a spinal motion segment undergoing physiological motions of flexion, extension, ipsilateral and contralateral bending, and ipsilateral axial rotation. Our FE model was created for a generic FCL geometry by morphing a previously imaged FCL anatomy onto an existing generic motion segment model. The fibre organization of the FCL in our models was subject-specific based on previous analysis of six dissected specimens. The fibre structures from those specimens were mapped onto the FCL geometry on the motion segment. A motion segment model was used to determine vertebral kinematics under specified spinal loading conditions, providing boundary conditions for the FCL-only multiscale FE model. The solution of the FE model then provided detailed stress and strain fields within the tissue. Lastly, we used this computed strain field and our previous studies of deformation of nerves embedded in fibrous networks during simple deformations (e.g. uniaxial stretch, shear) to estimate the nerve deformation based on the local tissue strain and fibre alignment. Our results show that extension and ipsilateral bending result in largest strains of the lumbar FCL, while contralateral bending and flexion experience lowest strain values. Similar to strain trends, we calculated that the stretch of the microtubules of the nerves, as well as the forces exerted on the nerves' membrane are maximal for extension and ipsilateral bending, but the location within the FCL of peak microtubule stretch differed from that of peak membrane force.


Radiology ◽  
2001 ◽  
Vol 219 (2) ◽  
pp. 381-386 ◽  
Author(s):  
Juliana C. Campos ◽  
Christine B. Chung ◽  
Nittaya Lektrakul ◽  
Robert Pedowitz ◽  
Debra Trudell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document