flexion extension
Recently Published Documents


TOTAL DOCUMENTS

2131
(FIVE YEARS 755)

H-INDEX

77
(FIVE YEARS 8)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Sergi Gil-González ◽  
Ricardo Andrés Barja-Rodríguez ◽  
Antoni López-Pujol ◽  
Hussein Berjaoui ◽  
Jose Enrique Fernández-Bengoa ◽  
...  

Abstract Background This study aimed to assess whether use of continuous passive motion (CPM) could improve range of motion in patients after total knee arthroplasty (TKA), if it could affect the surgical wound aspect (SWA) and if it could influence on pain management after TKA. Methods We randomized 210 patients in two groups, 102 patients in the CPM group, who received a standard rehabilitation protocol together with CPM application; and 108 patients in the no-CPM group, without CPM. Variables as knee motion (flexion, extension, range of motion) and pain were measured before surgery, on the 1st, 2nd and 3rd postoperative day, and in the 2nd, 6th, 12th and 24th postoperative weeks following TKA. The SWA was determined by the “surgical wound aspect score” (SWAS) in the next 48 h after surgery. This scale analyzes swelling, erythema, hematoma, blood drainage and blisters. Results There was an improvement in the knee motion over the course of follow-up in both groups, without significant difference in flexion parameter. We found no significant differences in the total score of SWA, except for hematoma, with less severity in the CPM group. Furthermore, we found no differences in the others SWAS parameters and pain. Conclusions The application of CPM does not provide benefit to our patients undergoing TKA in terms of either improved flexion mobility or decreased pain. No relationship was found between the use of CPM and the global score of SWA following a TKA, except for a decrease in hematoma appearance.


Author(s):  
Dorian Verdel ◽  
Simon Bastide ◽  
Nicolas Vignais ◽  
Olivier Bruneau ◽  
Bastien Berret

Active exoskeletons are promising devices for improving rehabilitation procedures in patients and preventing musculoskeletal disorders in workers. In particular, exoskeletons implementing human limb’s weight support are interesting to restore some mobility in patients with muscle weakness and help in occupational load carrying tasks. The present study aims at improving weight support of the upper limb by providing a weight model considering joint misalignments and a control law including feedforward terms learned from a prior population-based analysis. Three experiments, for design and validation purposes, are conducted on a total of 65 participants who performed posture maintenance and elbow flexion/extension movements. The introduction of joint misalignments in the weight support model significantly reduced the model errors, in terms of weight estimation, and enhanced the estimation reliability. The introduced control architecture reduced model tracking errors regardless of the condition. Weight support significantly decreased the activity of antigravity muscles, as expected, but increased the activity of elbow extensors because gravity is usually exploited by humans to accelerate a limb downwards. These findings suggest that an adaptive weight support controller could be envisioned to further minimize human effort in certain applications.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Daniele Esposito ◽  
Jessica Centracchio ◽  
Emilio Andreozzi ◽  
Sergio Savino ◽  
Gaetano D. Gargiulo ◽  
...  

Voluntary hand movements are usually impaired after a cerebral stroke, affecting millions of people per year worldwide. Recently, the use of hand exoskeletons for assistance and motor rehabilitation has become increasingly widespread. This study presents a novel hand exoskeleton, designed to be low cost, wearable, easily adaptable and suitable for home use. Most of the components of the exoskeleton are 3D printed, allowing for easy replication, customization and maintenance at a low cost. A strongly underactuated mechanical system allows one to synergically move the four fingers by means of a single actuator through a rigid transmission, while the thumb is kept in an adduction or abduction position. The exoskeleton’s ability to extend a typical hypertonic paretic hand of stroke patients was firstly tested using the SimScape Multibody simulation environment; this helped in the choice of a proper electric actuator. Force-myography was used instead of the standard electromyography to voluntarily control the exoskeleton with more simplicity. The user can activate the flexion/extension of the exoskeleton by a weak contraction of two antagonist muscles. A symmetrical master–slave motion strategy (i.e., the paretic hand motion is activated by the healthy hand) is also available for patients with severe muscle atrophy. An inexpensive microcontroller board was used to implement the electronic control of the exoskeleton and provide feedback to the user. The entire exoskeleton including batteries can be worn on the patient’s arm. The ability to provide a fluid and safe grip, like that of a healthy hand, was verified through kinematic analyses obtained by processing high-framerate videos. The trajectories described by the phalanges of the natural and the exoskeleton finger were compared by means of cross-correlation coefficients; a similarity of about 80% was found. The time required for both closing and opening of the hand exoskeleton was about 0.9 s. A rigid cylindric handlebar containing a load cell measured an average power grasp force of 94.61 N, enough to assist the user in performing most of the activities of daily living. The exoskeleton can be used as an aid and to promote motor function recovery during patient’s neurorehabilitation therapy.


2022 ◽  
Author(s):  
Nelly Seusing ◽  
Sebastian Strauss ◽  
Robert Fleischmann ◽  
Christina Nafz ◽  
Sergiu Groppa ◽  
...  

Abstract ObjectiveThe role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate. Few studies have examined the task dependent modulation of ipsilateral motor evoked potentials (iMEPs). Here, we determined the location of upper limb biceps brachii (BB) representation within the ipsilateral primary motor cortex. MethodsMR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was undertaken with twenty healthy participants who made tonic unilateral, bilateral homologous or bilateral antagonistic elbow flexion-extension voluntary contractions. Map center of gravity (CoG) and area for each BB were obtained. ResultsThe map CoG of the ipsilateral BB was located more anterior-laterally than those of the contralateral BB within the primary motor cortex. However different tasks had no effect on either the iMEP CoG location or the size. ConclusionOur data suggests that ipsilateral and contralateral MEP might originate in distinct adjacent neural populations in the primary motor cortex, independent of task dependence.


Author(s):  
Anne Schwarz ◽  
Miguel M. C. Bhagubai ◽  
Saskia H. G. Nies ◽  
Jeremia P. O. Held ◽  
Peter H. Veltink ◽  
...  

Abstract Background Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. Method Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. Results Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. Conclusion Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. Trial registration: ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093.


2022 ◽  
pp. 107754632110518
Author(s):  
Sarah Gebai ◽  
Gwendal Cumunel ◽  
Mohammad Hammoud ◽  
Gilles Foret ◽  
Emmanuel Roze ◽  
...  

Tuned mass dampers (TMDs) are proposed as a solution to reduce the involuntary tremor at the upper limb of a patient with postural tremor. The upper limb is modeled as a three-degrees-of-freedom rotating system in the vertical plane, with a flexion-extension motion at the joints. The measured extensor carpi radialis signal of a patient is used to excite the dynamic model. We propose a numerical methodology to optimize the parameters of the TMDs in the frequency domain combined with the response in the time domain. The objective function for the optimization of the dynamic problem is the maximum angular displacement of the wrist joint. The optimal stiffness and damping of the TMDs are obtained by satisfying the minimization of the selected objective function. The considered passive absorber is a cantilever beam–like TMD, whose length, beam cross-sectional diameter, and mass position reflect its stiffness for a chosen additional mass. A parametric study of the TMD is conducted to evaluate the effect of the TMD position along the hand segment, the number of TMDs, and the total mass of TMDs. The sensitivity of the TMD to a decrease of its modal damping ratio is studied to meet the range of stainless steel. TMDs are manufactured using stainless steel beams of the same length (9.1 cm) and cross-sectional diameter (0.79 mm), for which the mass (14.13 g) position is adjusted to match the optimal frequency. Three TMDs holding a mass of 14.13 g each cause 89% reduction in the wrist joint angular displacement.


Author(s):  
Michael Baggaley ◽  
Timothy R. Derrick ◽  
Gianluca Vernillo ◽  
Guillaume Millet ◽  
W. Brent Edwards

Abstract This note is to correct errata in the paper "Internal Tibial Forces and Moments During Graded Running" published in Journal of Biomechanical Engineering, Vol. 144, p. 011009 (2021), DOI: 10.1115/1.4051924. In the Data Analysis section, it was stated that, "The joint moments used in the optimization were the flexion-extension and abduction-adduction moments at the hip and ankle, and the flexion-extension moment at the knee." However, it has come to our attention that this is incorrect, and instead the joint moments used in the static optimization routine were the flexion-extension and abduction-adduction moments at the hip, and the flexion-extension moment at the knee and ankle. Please accept our apologies for the error.


Robotica ◽  
2022 ◽  
pp. 1-16
Author(s):  
Peng Zhang ◽  
Junxia Zhang

Abstract In order to assist patients with lower limb disabilities in normal walking, a new trajectory learning scheme of limb exoskeleton robot based on dynamic movement primitives (DMP) combined with reinforcement learning (RL) was proposed. The developed exoskeleton robot has six degrees of freedom (DOFs). The hip and knee of each artificial leg can provide two electric-powered DOFs for flexion/extension. And two passive-installed DOFs of the ankle were used to achieve the motion of inversion/eversion and plantarflexion/dorsiflexion. The five-point segmented gait planning strategy is proposed to generate gait trajectories. The gait Zero Moment Point stability margin is used as a parameter to construct a stability criteria to ensure the stability of human-exoskeleton system. Based on the segmented gait trajectory planning formation strategy, the multiple-DMP sequences were proposed to model the generation trajectories. Meanwhile, in order to eliminate the effect of uncertainties in joint space, the RL was adopted to learn the trajectories. The experiment demonstrated that the proposed scheme can effectively remove interferences and uncertainties.


2022 ◽  
Vol 12 ◽  
Author(s):  
Aditya Viswakumar ◽  
Venkateswaran Rajagopalan ◽  
Tathagata Ray ◽  
Pranitha Gottipati ◽  
Chandu Parimi

Gait analysis is used in many fields such as Medical Diagnostics, Osteopathic medicine, Comparative and Sports-related biomechanics, etc. The most commonly used system for capturing gait is the advanced video camera-based passive marker system such as VICON. However, such systems are expensive, and reflective markers on subjects can be intrusive and time-consuming. Moreover, the setup of markers for certain rehabilitation patients, such as people with stroke or spinal cord injuries, could be difficult. Recently, some markerless systems were introduced to overcome the challenges of marker-based systems. However, current markerless systems have low accuracy and pose other challenges in gait analysis with people in long clothing, hiding the gait kinematics. The present work attempts to make an affordable, easy-to-use, accurate gait analysis system while addressing all the mentioned issues. The system in this study uses images from a video taken with a smartphone camera (800 × 600 pixels at an average rate of 30 frames per second). The system uses OpenPose, a 2D real-time multi-person keypoint detection technique. The system learns to associate body parts with individuals in the image using Convolutional Neural Networks (CNNs). This bottom-up system achieves high accuracy and real-time performance, regardless of the number of people in the image. The proposed system is called the “OpenPose based Markerless Gait Analysis System” (OMGait). Ankle, knee, and hip flexion/extension angle values were measured using OMGait in 16 healthy volunteers under different lighting and clothing conditions. The measured kinematic values were compared with a standard video camera based normative dataset and data from a markerless MS Kinect system. The mean absolute error value of the joint angles from the proposed system was less than 90 for different lighting conditions and less than 110 for different clothing conditions compared to the normative dataset. The proposed system is adequate in measuring the kinematic values of the ankle, knee, and hip. It also performs better than the markerless systems like MS Kinect that fail to measure the kinematics of ankle, knee, and hip joints under dark and bright light conditions and in subjects with long robe clothing.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 385
Author(s):  
Masoud Abdollahi ◽  
Pranav Madhav Kuber ◽  
Michael Shiraishi ◽  
Rahul Soangra ◽  
Ehsan Rashedi

Background: A stroke often bequeaths surviving patients with impaired neuromusculoskeletal systems subjecting them to increased risk of injury (e.g., due to falls) even during activities of daily living. The risk of injuries to such individuals can be related to alterations in their movement. Using inertial sensors to record the digital biomarkers during turning could reveal the relevant turning alterations. Objectives: In this study, movement alterations in stroke survivors (SS) were studied and compared to healthy individuals (HI) in the entire turning task due to its requirement of synergistic application of multiple bodily systems. Methods: The motion of 28 participants (14 SS, 14 HI) during turning was captured using a set of four Inertial Measurement Units, placed on their sternum, sacrum, and both shanks. The motion signals were segmented using the temporal and spatial segmentation of the data from the leading and trailing shanks. Several kinematic parameters, including the range of motion and angular velocity of the four body segments, turning time, the number of cycles involved in the turning task, and portion of the stance phase while turning, were extracted for each participant. Results: The results of temporal processing of the data and comparison between the SS and HI showed that SS had more cycles involved in turning, turn duration, stance phase, range of motion in flexion–extension, and lateral bending for sternum and sacrum (p-value < 0.035). However, HI exhibited larger angular velocity in flexion–extension for all four segments. The results of the spatial processing, in agreement with the prior method, showed no difference between the range of motion in flexion–extension of both shanks (p-value > 0.08). However, it revealed that the angular velocity of the shanks of leading and trailing legs in the direction of turn was more extensive in the HI (p-value < 0.01). Conclusions: The changes in upper/lower body segments of SS could be adequately identified and quantified by IMU sensors. The identified kinematic changes in SS, such as the lower flexion–extension angular velocity of the four body segments and larger lateral bending range of motion in sternum and sacrum compared to HI in turning, could be due to the lack of proper core stability and effect of turning on vestibular system of the participants. This research could facilitate the development of a targeted and efficient rehabilitation program focusing on the affected aspects of turning movement for the stroke community.


Sign in / Sign up

Export Citation Format

Share Document