A FAST DOA ESTIMATION ALGORITHM FOR UNIFORM CIRCULAR ARRAYS IN THE PRESENCE OF UNKNOWN MUTUAL COUPLING

2011 ◽  
Vol 21 ◽  
pp. 257-271 ◽  
Author(s):  
Julan Xie ◽  
Zi-Shu He ◽  
Hui-Yong Li
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hao Feng ◽  
Lutao Liu ◽  
Biyang Wen

Most conventional direction-of-arrival (DOA) estimation algorithms are affected by the effect of mutual coupling, which make the performance of DOA estimation degrade. In this paper, a novel DOA estimation algorithm for conformal array in the presence of unknown mutual coupling is proposed. The special mutual coupling matrix (MCM) is applied to eliminate the effect of mutual coupling. With suitable array design, the decoupling between polarization parameter and angle information is accomplished. The two-demission DOA (2D-DOA) estimation is finally achieved based on estimation of signal parameters via rotational invariance techniques (ESPRIT). The proposed algorithm can be extended to conical conformal array as well. Two parameter pairing methods are illustrated for cylindrical and conical conformal array, respectively. The computer simulation verifies the effectiveness of the proposed algorithm.


2021 ◽  
Author(s):  
Wenwei Fang ◽  
Dingke Yu ◽  
Xin Wang ◽  
Yuzhang Xi ◽  
Zhihui Cao ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Song Liu ◽  
Lisheng Yang ◽  
Shizhong Yang ◽  
Qingping Jiang ◽  
Haowei Wu

A blind direction-of-arrival (DOA) estimation algorithm based on the estimation of signal parameters via rotational invariance techniques (ESPRIT) is proposed for a uniform circular array (UCA) when strong electromagnetic mutual coupling is present. First, an updated UCA model with mutual coupling in a discrete Fourier transform (DFT) beam space is deduced, and the new manifold matrix is equal to the product of a centrosymmetric diagonal matrix and a Vandermonde-structure matrix. Then we carry out blind DOA estimation through a modified ESPRIT method, thus avoiding the need for spatial angular searching. In addition, two mutual coupling parameter estimation methods are presented after the DOAs have been estimated. Simulation results show that the new algorithm is reliable and effective especially for closely spaced signals.


Sign in / Sign up

Export Citation Format

Share Document