coupling matrix
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 61)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 29 (6) ◽  
pp. 927-942
Author(s):  
Nikita Egorov ◽  
◽  
Vladimir Ponomarenko ◽  
Sofia Melnikova ◽  
Ilya Sysoev ◽  
...  

This work aims to show that long transient processes in mesascale models of thalamocortical brain network can appear in very general case, in particular for different number of elements in the ensemble (different level of detalization) and different initial phase of external driving, with these regimes surviving at small variations of number and structure of couplings. Methods. Thalamocortical brain networks are modelled using electronic circuit realized using computer SPICE eluating software. FitzHugh – Nagumo analog generator is used as a single circuit element. Results. Long quasiregular and nonregular oscillation processes with stationary amplitude were shown to occur in ensembles of 14, 28 and 56 model FitzHug – Nagumo generators. The dependency of transient process length on the external driving initial phase and particular coupling matrix structure was studied. Conclusion. The proposed electronic models of thalamocortical system were proved to reproduce the pathological regimes of brain activity in similar way despite the number of elements in the circuit, connectivity matrix and initial driving phase.


2021 ◽  
Author(s):  
Martyna Mul ◽  
Adam Lamecki ◽  
Roberto Gomez-Garcia ◽  
Michal Mrozowski

2021 ◽  
Vol 9 ◽  
Author(s):  
Yongliang Zhang ◽  
Yanxing Wang ◽  
Yaxin Yi ◽  
Junlin Wang ◽  
Jie Liu ◽  
...  

The tuning of microwave filter is important and complex. Extracting coupling matrix from given S-parameters is a core task for filter tuning. In this article, one-dimensional convolutional autoencoders (1D-CAEs) are proposed to extract coupling matrix from S-parameters of narrow-band cavity filter and apply this method to the computer-aided tuning process. The training of 1D-CAE model consists of two steps. First, in the encoding part, one-dimensional convolutional neural network (1D-CNN) with several convolution layers and pooling layers is used to extract the coupling matrix from the S-parameters during the microwave filters’ tuning procedure. Second, in the decoding part, several full connection layers are employed to reconstruct the S-parameters to ensure the accuracy of extraction. The S-parameters obtained by measurement or simulation exist with phase shift, so the influence of phase shift must be removed. The efficiency of the presented method in this article is validated by a sixth-order cross-coupled filter simulation model tuning example.


2021 ◽  
Author(s):  
Yinan Shu ◽  
Linyao Zhang ◽  
Shaozeng Sun ◽  
Yudong Huang ◽  
Donald Truhlar ◽  
...  

Direct dynamics by mixed quantum–classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive timesteps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature- driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computer time and good agreement with methods employing nonadiabatic coupling vectors computed in conventional ways. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods.


2021 ◽  
Vol 22 (9) ◽  
pp. 1260-1269
Author(s):  
Yang Gao ◽  
Fan Zhang ◽  
Yingying Qiao ◽  
Jiawei Zang ◽  
Lei Li ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1404
Author(s):  
Francisco J. Martín-Vega ◽  
Gerardo Gómez

A low-complexity pilot pattern and a frequency-domain channel estimation method for Inter-Carrier Interference (ICI) mitigation is proposed for Orthogonal Frequency Division Multiple Access (OFDM) systems. The proposed method exploits the band structure of the coupling matrix to perform an ICI-free channel estimation in the frequency domain. This ICI-free estimation relies on some conditions imposed over the pilot pattern that simplify the complexity of channel estimation significantly, since its complexity is the same as classical least squares (LS) channel estimation used in low mobility scenarios. Then, the ICI is removed by using a modified version of Minimum Mean Square Error (MMSE) equalization, which reduces the computational complexity considerably. This modified MMSE equalization relies on the sparse and banded structure of the coupling matrix and on a low complexity variant of the Cholesky decomposition, which is named LDLH factorization. It is shown that the proposed method greatly improves the Bit Error Rate (BER) in the high Signal-to-Noise Ratio (SNR) regime.


Sign in / Sign up

Export Citation Format

Share Document