International Journal of Antennas and Propagation
Latest Publications


TOTAL DOCUMENTS

2433
(FIVE YEARS 477)

H-INDEX

33
(FIVE YEARS 7)

Published By Hindawi Limited

1687-5877, 1687-5869

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Zaixue Wei ◽  
Qipeng Tang

Aerial communication is very flexible due to almost no restrictions on geographical conditions. In recent years, with the development and application of the unmanned aerial vehicle, the air-to-air communication attracts dense interests from the researchers. More accurate and precise channel modeling for air-to-air communication is a new hot topic because of its essential role in the performance evaluation of the systems. This paper presents an analytical nonstationary regular-shaped geometry-based statistical model for low-altitude air-to-air communication over an open area with considerations on ground scattering. Analytical expressions of the channel impulse response and the autocorrelation functions based on the three-ray model are derived. Based on the assumption of uniform distribution of the ground scatterers, the distributions of the channel coefficients such as time delay and path attenuation are derived, simulated, compared, and fitted. The nonstationary characteristics of the channel are observed through the time-variant distributions of the channel coefficients as well as the time-variant autocorrelated functions and time-variant Doppler power spectrum density.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Wei Xu ◽  
Jingchang Nan ◽  
Mingming Gao

A compact circularly polarized (CP) antenna is proposed for low-profile and wideband operation based on characteristic mode analysis (CMA). A ring patch with a gap and two arc-shaped metallic stubs as the radiator is analyzed and optimized by CMA to figure out the orthogonal modes and operating frequency band for potential good axial ratio (AR) performance. The studies of these CP modes provide a physical insight into the property of broadband circular polarization. Such an in-depth understanding paves the way for the proposal of novel CP antenna with separation between the design of radiator and feeding network. A 50-Ω coplanar waveguide (CPW) is introduced and placed appropriately to excite the desired modes based on the information from CMA, which employs two asymmetric ground planes to improve the performance in terms of AR and impedance matching. The antenna with a compact size of 0.71λ0 × 0.76λ0 × 0.038λ0 (λ0 is the free-space wavelength at the center frequency of the 3-dB AR bandwidth) is fabricated and measured for validation. The realized gain varies from 1.6 to 3.1 dBic over the operating bandwidth characterized by the measured 10-dB impedance bandwidth of 83.8% (3.98–9.72 GHz) and 3-dB AR bandwidth of 70.3% (4.59–9.57 GHz), respectively.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Jiarui Bao ◽  
Shuyan Hu ◽  
Zibin Xie ◽  
Guangxi Hu ◽  
Ye Lu ◽  
...  

This work focuses on the optimization of coupling coefficient (k) of the inductive link for the wireless power transfer (WPT) system to be used in implantable medical devices (IMDs) of centimeter size. The analytic expression of k is presented. Simulations are conducted by using the high-frequency structure simulator (HFSS). Analytic results are verified with simulations. The receiving (Rx) coil is implanted in the body and set as a circular coil with a radius of 5 millimeters for reducing the risk of tissue inflammation. The inductive link under misalignment scenarios is optimized to improve k. When the distance between the transmitting (Tx) and Rx coils is fixed at 20 mm, it is found that, to maximize k, the Tx coil in a planar spiral configuration with an average radius of 20 mm is preferred, and the Rx coil in a solenoid configuration with a wire pitch of 0.7 mm is recommended. Based on these optimization results, an inductive link WPT system is proposed; the coupling coefficient k, the power transfer efficiency (PTE), and the maximum power delivered to the load (MPDL) of the system are obtained with both simulation and experiment. Different media of air, muscle, and bone separating the Tx and Rx coils are tested. For the muscle (bone) medium, PTE is 44.14% (43.07%) and MPDL is 145.38 mW (128.13 mW), respectively.


2022 ◽  
Vol 2022 ◽  
pp. 1-1
Author(s):  
Saad Hassan Kiani ◽  
Xin Cheng Ren ◽  
Adil Bashir ◽  
Muhammad Rizwan Anjum ◽  
Ammar Rafiq ◽  
...  
Keyword(s):  


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Haibin Jiang ◽  
Zhiyong Yu ◽  
Jian Yang ◽  
Kai Kang

Full-duplex cooperative spectrum sensing (FD-CSS) is an important research field in the field of spectrum sensing. In the FD-CSS network, the secondary user (SU) senses the usage status of the authorized spectrum by the primary user (PU) through the sensing channel and then reports the perceived data to the fusion center (FC) through the reporting channel. The FC makes a comprehensive judgment after summarizing the data through the fusion algorithm. In the secondary network with SU, throughput is an important index to measure the performance of the network. Taking throughput as the optimization goal, this paper theoretically deduces and verifies the optimal data fusion algorithm in cooperative spectrum sensing (CSS), the threshold of optimal energy detection, and the optimal transmission power of SU in the secondary network. The simulation results show the correctness of the results in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Thennarasi Govindan ◽  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Sachin Kumar ◽  
Thipparaju Rama Rao ◽  
...  

A conformal four-port multiple-input-multiple-output (MIMO) antenna operating at 2.4 GHz and ultrawideband (UWB) is presented for wearable applications. The unit element of the MIMO antenna is a simple rectangular monopole with an impedance bandwidth of 8.9 GHz (3.1–12 GHz). In the monopole radiator, stubs are introduced to achieve 2.4 GHz resonance. Also, a defect is introduced in the ground plane to reduce backside radiation. The efficiency of the proposed antenna is greater than 95%, and its peak gain is 3.1 dBi. The MIMO antenna has an isolation of >20 dB, and the estimated specific absorption rate (SAR) values for 1 gm of tissue are below 1.6 W/Kg. The size of the four-port MIMO antenna is 1.38λ0 × 0.08λ0 × 0.014λ0.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yinsheng Wang ◽  
WeiJia Cui ◽  
Yuxi Du ◽  
Bin Ba ◽  
Fengtong Mei

As we all know, nested array can obtain a larger array aperture and more degrees of freedom using fewer sensors. In this study, we not only designed an enhanced symmetric nested array (ESNA), which achieved more consecutive lags and more unique lags compared with a generalized nested array but also developed a special cumulant matrix, in the case of a given number of sensors, which can automatically generate the largest consecutive lags of the array. First, the direction-of-arrivals (DOAs) of mixed sources are estimated using the special cumulant matrix. Then, we can estimate the range of the near-field source in the mixed source using a one-dimensional spectral search through estimated DOAs, and in the mixed sources, the near-field and far-field sources are classified by bringing in the range parameter. The largest consecutive lags and composition method of ESNA are also given, under a given number of sensors.Our algorithm has moderate computation complexity, which provides a higher resolution and improves the parameters’ estimation accuracy. Numerical simulation results demonstrate that the proposed array showed an outstanding performance under estimation accuracy and resolution ability for both DOA and range estimation compared with existing arrays of the same physical array sensors.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Mohammad Monirujjaman Khan ◽  
Junayed Hossain ◽  
Kaisarul Islam ◽  
Nazmus Sadat Ovi ◽  
Md. Nakib Alalm Shovon ◽  
...  

In this study, the design of a compact and novel millimeter wave cotton textile-based wearable antenna for body-centric communications in healthcare applications is presented. The free space and on-body antenna performance parameters for the proposed antenna at 60 GHz are investigated and analyzed. The antenna is based on a 1.5 mm thick cotton substrate and has an overall dimension of 7.0 × 4.5 × 1.5 mm3. In free space, the antenna is resonant at 60 GHz and achieves a wide impedance bandwidth. The maximum gain at this resonant frequency is 6.74 dBi, and the radiation efficiency is 93.30%. Parametric changes were carried out to study the changes in the resonant frequency, gain, and radiation efficiency. For body-centric communications, the antenna was simulated at 5 different distances from a three-layer human torso-equivalent phantom. The radiation efficiency dropped by 24% and gradually increased with the gap distance. The antenna design was also analyzed by using 10 different textile substrates for both free space and on-body scenarios. The major benefits of the antenna are discussed as follows. Compared to a previous work, the antenna is very efficient, compact, and has a wide bandwidth. In BCWCs for e-health applications, the antenna needs to be very compact due to the longer battery life, and it has to have a wide bandwidth for high data rate communication. Since the antenna will be wearable with a sensor system, the shape of the antenna needs to be planar, and it is better to design the antenna on a textile substrate for integration into clothes. The antenna also needs to show high gain and efficiency for power-efficient communication. This proposed antenna meets all these criteria, and hence, it will be a good candidate for BCWCs in e-health applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jizhou Wu ◽  
Hongmin Zhang ◽  
Xuanhao Gao

Using traditional neural network algorithms to adapt to high-resolution range profile (HRRP) target recognition is a complex problem in the current radar target recognition field. Under the premise of in-depth analysis of the long short-term memory (LSTM) network structure and algorithm, this study uses an attention model to extract data from the sequence. We build a dual parallel sequence network model for rapid classification and recognition and to effectively improve the initial LSTM network structure while reducing network layers. Through demonstration by designing control experiments, the target recognition performance of HRRP is demonstrated. The experimental results show that the bidirectional long short-term memory (BiLSTM) algorithm has obvious advantages over the template matching method and initial LSTM networks. The improved BiLSTM algorithm proposed in this study has significantly improved the radar HRRP target recognition accuracy, which enhanced the effectiveness of the improved algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingxin Guo ◽  
Qian Chen ◽  
Jianxun Su ◽  
Zengrui Li

In this study, a frequency-selective rasorber with a tunable passband and two absorptive bands is presented. It is designed using two active FSSs, an absorptive FSS realized with tripole elements, and a lossless bandpass FSS achieved with ring slots. Both active FSSs embedded with varactors realize the shift of transmission frequency bands by controlling the bias voltage of the feed network. The working principle is briefly investigated according to an equivalent circuit model. A prototype is fabricated and measured to verify the simulated results, which show that a passband is tuned from 3 to 4.78 GHz between two absorptive bands, and the maximum band of |S11| < −10 dB covers from 2.2 to 7.96 GHz.


Sign in / Sign up

Export Citation Format

Share Document