Reserve of characteristic inclusion for interval linear systems of relations

Author(s):  
Ирина Александровна Шарая ◽  
Сергей Петрович Шарый

В работе рассматриваются интервальные линейные включения Cx ⊆ d в полной интервальной арифметике Каухера. Вводится количественная мера выполнения этого включения, названная “резервом включения”, исследуются ее свойства и приложения. Показано, что резерв включения оказывается полезным инструментом при изучении АЕ-решений и кванторных решений интервальных линейных систем уравнений и неравенств. В частности, использование резерва включения помогает при определении положения точки относительно множества решений, при исследовании пустоты множества решений или его внутренности и т.п In this paper, we consider interval linear inclusions Cx ⊆ d in the Kaucher complete interval arithmetic. These inclusions are important both on their own and because they provide equivalent and useful descriptions for the so-called quantifier solutions and AE-solutions to interval systems of linear algebraic relations of the form Ax σ b , where A is an interval m × n -matrix, x ∈ R , b is an interval m -vector, and σ ∈ {= , ≤ , ≥} . In other words, these are interval systems in which equations and non-strict inequalities can be mixed. Considering the inclusion Cx ⊆ d in the Kaucher complete interval arithmetic allows studing simultaneously and in a uniform way all the different special cases of quantifier solutions and AE-solutions of interval systems of linear relations, as well as using interval analysis methods. A quantitative measure, called the “inclusion reserve”, is introduced to characterize how strong the inclusion Cx ⊆ d is fulfilled. In our work, we investigate its properties and applications. It is shown that the inclusion reserve turns out to be a useful tool in the study of AE-solutions and quantifier solutions of interval linear systems of equations and inequalities. In particular, the use of the inclusion reserve helps to determine the position of a point relative to a solution set, in investigating whether the solution set is empty or not, whether a point is in the interior of the solution set, etc

Author(s):  
Milan Hladík

Abstract We investigate parametric interval linear systems of equations. The main result is a generalization of the Bauer–Skeel and the Hansen–Bliek–Rohn bounds for this case, comparing and refinement of both. We show that the latter bounds are not provable better, and that they are also sometimes too pessimistic. The presented form of both methods is suitable for combining them into one to get a more efficient algorithm. Some numerical experiments are carried out to illustrate performances of the methods.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Leila Notash

For under-constrained and redundant parallel manipulators, the actuator inputs are studied with bounded variations in parameters and data. Problem is formulated within the context of force analysis. Discrete and analytical methods for interval linear systems are presented, categorized, and implemented to identify the solution set, as well as the minimum 2-norm least-squares solution set. The notions of parameter dependency and solution subsets are considered. The hyperplanes that bound the solution in each orthant characterize the solution set of manipulators. While the parameterized form of the interval entries of the Jacobian matrix and wrench produce the minimum 2-norm least-squares solution for the under-constrained and over-constrained systems of real matrices and vectors within the interval Jacobian matrix and wrench vector, respectively. Example manipulators are used to present the application of methods for identifying the solution and minimum norm solution sets for actuator forces/torques.


Author(s):  
Leila Notash

For under-constrained and redundant parallel manipulators, the actuator inputs are studied with bounded variations in parameters and data. Problem is formulated within the context of force analysis. Discrete and analytical methods for interval linear systems are presented, categorized and implemented to identify the solution set, as well as the minimum 2-norm least square solution set. The notions of parameter dependency and solution subsets are considered. The hyperplanes that bound the solution in each orthant characterize the solution set of manipulators. While the parameterized form of the interval entries of the Jacobian matrix and wrench produce the minimum 2-norm least square solution for the under-constrained and over-constrained systems of real matrices and vectors within the interval Jacobian matrix and wrench vector, respectively. Example manipulators are used to present the application of methods for identifying the solution and minimum norm solution sets for actuator forces/torques.


Sign in / Sign up

Export Citation Format

Share Document