scholarly journals Oxidative Ring Expansion of Cyclobutanols: Access to Functionalized 1,2-Dioxanes

Author(s):  
María Martín López Martín López ◽  
Nicolas Jamey ◽  
Alexis Pinet ◽  
Bruno Figadère ◽  
Ferrié Laurent

Cyclobutanols undergo an oxidative ring expansion into 1,2-dioxanols by using Co(acac)<sub>2</sub> and triplet oxygen (<sup>3</sup>O<sub>2</sub>) as radical promoters. The formation of an alkoxy radical drives to the regioselective break of the strained ring with stabilization of a new radical on the most substituted side. The radical traps then oxygen to form 1,2-dioxanols. The reaction is particularly effective on secondary cyclobutanols but can work also on tertiary alcohols. Further acetylation generates peroxycarbenium species under catalytic Lewis acid conditions, which react with neutral nucleophiles. Many original 1,2-dioxanes, which would be difficult to prepare by another method, were then obtained with a preferred 3,6-<i>cis</i>-configuration. This method provides an interesting access to the total synthesis of many natural endoperoxides.

2020 ◽  
Author(s):  
María Martín López Martín López ◽  
Nicolas Jamey ◽  
Alexis Pinet ◽  
Bruno Figadère ◽  
Ferrié Laurent

Cyclobutanols undergo an oxidative ring expansion into 1,2-dioxanols by using Co(acac)<sub>2</sub> and triplet oxygen (<sup>3</sup>O<sub>2</sub>) as radical promoters. The formation of an alkoxy radical drives to the regioselective break of the strained ring with stabilization of a new radical on the most substituted side. The radical traps then oxygen to form 1,2-dioxanols. The reaction is particularly effective on secondary cyclobutanols but can work also on tertiary alcohols. Further acetylation generates peroxycarbenium species under catalytic Lewis acid conditions, which react with neutral nucleophiles. Many original 1,2-dioxanes, which would be difficult to prepare by another method, were then obtained with a preferred 3,6-<i>cis</i>-configuration. This method provides an interesting access to the total synthesis of many natural endoperoxides.


ChemInform ◽  
2010 ◽  
Vol 41 (27) ◽  
pp. no-no
Author(s):  
Matthew Brichacek ◽  
Lindsay A. Batory ◽  
Jon T. Njardarson

Heterocycles ◽  
2003 ◽  
Vol 59 (2) ◽  
pp. 527 ◽  
Author(s):  
Tatsuo Nagasaka ◽  
Yuji Koseki ◽  
Shinya Katsura ◽  
Shuichi Kusano ◽  
Harumi Sakata ◽  
...  

1977 ◽  
Vol 32 (7-8) ◽  
pp. 495-506 ◽  
Author(s):  
E. Wünsch ◽  
G. Wendlberger ◽  
A. Hallett ◽  
E. Jaeger ◽  
S. Knof ◽  
...  

A new total synthesis of the tetratriacontapeptide amide corresponding to the proposed primary structure of human big gastrin I is described. The synthetic route was based on the preparation of six suitably protected fragments, related to sequence 28 - 34, 23 - 27, 21 - 22, 15-20, 9 - 14, and 1 - 8, to be used as building blocks for the total synthesis. The protecting groups were selected according to the Schwyzer-Wünsch strategy of maximum side chain protection based on tertiary alcohols, also for the imidazol function of histidine. Subsequent assembly of the six fragments by three different pathways using the highly efficient Wünsch-Weygand condensation procedure to ensure minimum racemization, followed by deprotection of the synthetic products via exposure to trifluoroacetic acid and final purification by ion-exchange chromatography on DEAE-Sephadex A-25 and partition chromatography on Sephadex G-25, led to human big gastrin I, homogeneous within the limits of the analytical methods used. The biological activity of the synthetic product proved to be 50 percent higher than that of human little gastrin I. The 32-leucine analogue of human big gastrin I was prepared in the same way.


Synthesis ◽  
2020 ◽  
Vol 53 (02) ◽  
pp. 359-364
Author(s):  
Hans-Joachim Knölker ◽  
Valerie Lösle ◽  
Olga Kataeva

AbstractWe describe the first total synthesis of the recently discovered pyrano[3,2-a]carbazole alkaloid clausenalansine A. The synthetic strategy for the construction of this formylpyrano[3,2-a]carbazole is based on a sequence of Buchwald–Hartwig coupling, palladium(II)-catalyzed oxidative cyclization, Lewis acid promoted annulation of the pyran ring, and chemoselective oxidation of a methyl to a formyl group.


Sign in / Sign up

Export Citation Format

Share Document