The influence of partial cutting on mountain pine beetle-caused tree mortality in Black Hills ponderosa pine stands

Author(s):  
J.M. Schmid ◽  
S.A. Mata ◽  
R.R. Kessler ◽  
J.B. Popp
1991 ◽  
Vol 21 (6) ◽  
pp. 750-755 ◽  
Author(s):  
J. M. Schmid ◽  
S. A. Mata ◽  
R. K. Watkins ◽  
M. R. Kaufmann

Water potential was measured in five ponderosa pine (Pinusponderosa Laws.) in each of four stands of different growing-stock levels at two locations in the Black Hills of South Dakota. Mean water potentials at dawn and midday varied significantly among growing-stock levels at one location, but differences were not consistent. Mean dawn and midday water potentials within growing-stock levels significantly decreased during the summer but showed minor increases during the overall decline. Stress levels were considered high enough to influence physiological functioning and, therefore, influence susceptibility to mountain pine beetle (Dendroctonusponderosae Hopk.) attack. Mountain pine beetle infestations did not develop within the stressed stands, which suggests that resistance may be only one factor in the outbreak scenario.


2018 ◽  
Vol 10 (1) ◽  
pp. 69 ◽  
Author(s):  
Kyle Mullen ◽  
Fei Yuan ◽  
Martin Mitchell

The recent and intense outbreak (first decade of 2000s) of the mountain pine beetle in the Black Hills of South Dakota and Wyoming, which impacted over 33% of the 1.2 million acre (486,000 ha) Black Hills National Forest, illustrates what can occur when forest management practices intersect with natural climatic oscillations and climate change to create the “perfect storm” in a region where the physical environment sets the stage for a plethora of economic activities ranging from extractive industries to tourism. This study evaluates the potential of WorldView-2 satellite imagery for green-attacked tree detection in the ponderosa pine forest of the Black Hills, USA. It also discusses the consequences of long term fire policy and climate change, and the use of remote sensing technology to enhance mitigation. It was found that the near-infrared one (band 7) of WorldView-2 imagery had the highest influence on the green-attack classification. The Random Forest classification produced the best results when transferred to the independent dataset, whereas the Logistic Regression models consistently yielded the highest accuracies when cross-validated with the training data. Lessons learned include: (1) utilizing recent advances in remote sensing technologies, most notably the use of WorldView-2 data, to assist in more effectively implementing mitigation measures during an epidemic, and (2) implementing pre-emptive thinning strategies; both of which can be applied elsewhere in the American West to more effectively blunt or preclude the consequences of a mountain pine beetle outbreak on an existing ponderosa pine forest. 


1987 ◽  
Vol 17 (10) ◽  
pp. 1234-1239 ◽  
Author(s):  
Mark D. McGregor ◽  
Gene D. Amman ◽  
Richard F. Schmitz ◽  
Robert D. Oakes

Partial cutting prescriptions were applied in the fall of 1978 through the early winter of 1980 to lodgepole pine stands (Pinuscontorta Douglas var. latifolia Engelmann) threatened by mountain pine beetle (Dendroctonusponderosae Hopkins) in the Kootenai and Lolo National Forests in western Montana, U.S.A. Partial cutting prescriptions consisted of removing from separate stands all trees 17.8, 25,4, and 30.5 cm and larger diameter at breast height (dbh), and prescriptions leaving 18.4, 23.0, and 27.6 m2 basal area per hectare. In thinned stands, the first 5 years' results following cutting showed greatly reduced tree losses to mountain pine beetle when compared with untreated stands (P < 0.01) on both forests. There were no significant differences in tree losses among partial cut treatments (P > 0.05). Post treatment mortality of lodgepole pine 12.7 cm and larger dbh to mountain pine beetle averaged 4.0 to 38.6% on the Kootenai and 6.0 to 17.1% on the Lolo in treated stands, compared with averages of 93.8 and 73.1% in untreated stands. Partial cutting appears to be useful for reducing lodgepole losses to mountain pine beetle.


1999 ◽  
Author(s):  
R. A. Obedzinski ◽  
J. M. Schmid ◽  
S. A. Mata ◽  
W. K. Olsen ◽  
R. R. Kessler

Sign in / Sign up

Export Citation Format

Share Document